BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 24293290)

  • 1. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury.
    Sicari BM; Dearth CL; Badylak SF
    Anat Rec (Hoboken); 2014 Jan; 297(1):51-64. PubMed ID: 24293290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration.
    Badylak SF; Dziki JL; Sicari BM; Ambrosio F; Boninger ML
    Biomaterials; 2016 Oct; 103():128-136. PubMed ID: 27376561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle.
    Perniconi B; Costa A; Aulino P; Teodori L; Adamo S; Coletti D
    Biomaterials; 2011 Nov; 32(31):7870-82. PubMed ID: 21802724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis.
    Greising SM; Corona BT; McGann C; Frankum JK; Warren GL
    Tissue Eng Part B Rev; 2019 Dec; 25(6):510-525. PubMed ID: 31578930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.
    Corona BT; Greising SM
    Biomaterials; 2016 Oct; 104():238-46. PubMed ID: 27472161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives.
    Chen FM; Wu LA; Zhang M; Zhang R; Sun HH
    Biomaterials; 2011 Apr; 32(12):3189-209. PubMed ID: 21300401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.
    Qazi TH; Mooney DJ; Pumberger M; Geissler S; Duda GN
    Biomaterials; 2015; 53():502-21. PubMed ID: 25890747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies.
    Passipieri JA; Christ GJ
    Cells Tissues Organs; 2016; 202(3-4):202-213. PubMed ID: 27825153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.
    Urciuolo A; Urbani L; Perin S; Maghsoudlou P; Scottoni F; Gjinovci A; Collins-Hooper H; Loukogeorgakis S; Tyraskis A; Torelli S; Germinario E; Fallas MEA; Julia-Vilella C; Eaton S; Blaauw B; Patel K; De Coppi P
    Sci Rep; 2018 May; 8(1):8398. PubMed ID: 29849047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle as a paradigm for regenerative biology and medicine.
    Gayraud-Morel B; Chrétien F; Tajbakhsh S
    Regen Med; 2009 Mar; 4(2):293-319. PubMed ID: 19317647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling.
    Londono R; Badylak SF
    Ann Biomed Eng; 2015 Mar; 43(3):577-92. PubMed ID: 25213186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal cells for skeletal tissue engineering.
    Panetta NJ; Gupta DM; Quarto N; Longaker MT
    Panminerva Med; 2009 Mar; 51(1):25-41. PubMed ID: 19352307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.
    Dearth CL; Slivka PF; Stewart SA; Keane TJ; Tay JK; Londono R; Goh Q; Pizza FX; Badylak SF
    Acta Biomater; 2016 Feb; 31():50-60. PubMed ID: 26612417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerative medicine in orthopaedic surgery.
    Corsi KA; Schwarz EM; Mooney DJ; Huard J
    J Orthop Res; 2007 Oct; 25(10):1261-8. PubMed ID: 17551972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of skeletal muscle.
    Turner NJ; Badylak SF
    Cell Tissue Res; 2012 Mar; 347(3):759-74. PubMed ID: 21667167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun scaffolds for stem cell engineering.
    Lim SH; Mao HQ
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1084-96. PubMed ID: 19647024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologic scaffolds for musculotendinous tissue repair.
    Turner NJ; Badylak SF
    Eur Cell Mater; 2013 Jan; 25():130-43. PubMed ID: 23329468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.
    Koning M; Werker PM; van Luyn MJ; Harmsen MC
    Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue.
    Desiderio V; De Francesco F; Schiraldi C; De Rosa A; La Gatta A; Paino F; d'Aquino R; Ferraro GA; Tirino V; Papaccio G
    J Cell Physiol; 2013 Aug; 228(8):1762-73. PubMed ID: 23359523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologic scaffold for CNS repair.
    Meng F; Modo M; Badylak SF
    Regen Med; 2014 May; 9(3):367-83. PubMed ID: 24935046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.