These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24293612)

  • 1. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development.
    Granot D; Kelly G; Stein O; David-Schwartz R
    J Exp Bot; 2014 Mar; 65(3):809-19. PubMed ID: 24293612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexose kinases and their role in sugar-sensing and plant development.
    Granot D; David-Schwartz R; Kelly G
    Front Plant Sci; 2013; 4():44. PubMed ID: 23487525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation.
    da-Silva WS; Rezende GL; Galina A
    J Exp Bot; 2001 Jun; 52(359):1191-201. PubMed ID: 11432937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Hexokinases are Multifaceted Proteins.
    Aguilera-Alvarado GP; Sánchez-Nieto S
    Plant Cell Physiol; 2017 Jul; 58(7):1151-1160. PubMed ID: 28449056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexokinase mediates stomatal closure.
    Kelly G; Moshelion M; David-Schwartz R; Halperin O; Wallach R; Attia Z; Belausov E; Granot D
    Plant J; 2013 Sep; 75(6):977-88. PubMed ID: 23738737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): possible role in pollen germination under conditions of high temperature and CO2 enrichment.
    Karni L; Aloni B
    Ann Bot; 2002 Nov; 90(5):607-12. PubMed ID: 12466101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants.
    Damari-Weissler H; Kandel-Kfir M; Gidoni D; Mett A; Belausov E; Granot D
    Planta; 2006 Nov; 224(6):1495-502. PubMed ID: 16977457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature.
    Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT
    Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Fructokinases: Evolutionary, Developmental, and Metabolic Aspects in Sink Tissues.
    Stein O; Granot D
    Front Plant Sci; 2018; 9():339. PubMed ID: 29616058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian Regulation and Diurnal Variation in Gas Exchange.
    Resco de Dios V
    Plant Physiol; 2017 Sep; 175(1):3-4. PubMed ID: 28860180
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of tomato hexose kinases.
    Granot D
    Funct Plant Biol; 2007 Jun; 34(6):564-570. PubMed ID: 32689384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana.
    Riggs JW; Cavales PC; Chapiro SM; Callis J
    BMC Plant Biol; 2017 Apr; 17(1):83. PubMed ID: 28441933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development.
    Stein O; Damari-Weissler H; Secchi F; Rachmilevitch S; German MA; Yeselson Y; Amir R; Schaffer A; Holbrook NM; Aloni R; Zwieniecki MA; Granot D
    New Phytol; 2016 Mar; 209(4):1484-95. PubMed ID: 26467542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.
    Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE
    Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity.
    Antunes WC; Provart NJ; Williams TC; Loureiro ME
    Plant Cell Environ; 2012 Apr; 35(4):747-59. PubMed ID: 21999376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putting plant hexokinases in their proper place.
    Granot D
    Phytochemistry; 2008 Nov; 69(15):2649-54. PubMed ID: 18922551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.
    Takayama K; King D; Robinson SA; Osmond B
    Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.
    Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M
    Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The control of sugar accumulation within strawberry aggregate fruit by invertase and hexokinase].
    Xie M; Chen JW; Qin QP; Jiang GH; Sun CB; Zhang HQ; Xu HX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Jun; 33(3):213-8. PubMed ID: 17556808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.