These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24293644)

  • 21. Probing the physical basis for trp repressor-operator recognition.
    Grillo AO; Brown MP; Royer CA
    J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of corepressor-mediated specific DNA binding by the purine repressor.
    Schumacher MA; Choi KY; Lu F; Zalkin H; Brennan RG
    Cell; 1995 Oct; 83(1):147-55. PubMed ID: 7553867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance.
    Hinrichs W; Kisker C; Düvel M; Müller A; Tovar K; Hillen W; Saenger W
    Science; 1994 Apr; 264(5157):418-20. PubMed ID: 8153629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulation in solvent of the bacteriophage 434 cI repressor protein DNA binding domain amino acids (R1-69) in complex with its cognate operator (OR1) DNA sequence.
    Harris LF; Sullivan MR; Popken-Harris PD
    J Biomol Struct Dyn; 1999 Aug; 17(1):1-17. PubMed ID: 10496417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of KorA bound to operator DNA: insight into repressor cooperation in RP4 gene regulation.
    König B; Müller JJ; Lanka E; Heinemann U
    Nucleic Acids Res; 2009 Apr; 37(6):1915-24. PubMed ID: 19190096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman spectroscopic analysis of Tet repressor-operator DNA interaction in deuterium oxide.
    Krafft C; Hinrichs W; Orth P; Saenger W; Welfle H
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):239-50. PubMed ID: 9551655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MarR family transcription factors: dynamic variations on a common scaffold.
    Deochand DK; Grove A
    Crit Rev Biochem Mol Biol; 2017 Dec; 52(6):595-613. PubMed ID: 28670937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator.
    Spronk CA; Bonvin AM; Radha PK; Melacini G; Boelens R; Kaptein R
    Structure; 1999 Dec; 7(12):1483-92. PubMed ID: 10647179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms.
    Palanca C; Rubio V
    FEBS J; 2016 Mar; 283(6):1039-59. PubMed ID: 26744254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure analysis of Bacillus cereus MepR-like transcription regulator, BC0657, in complex with pseudo-ligand molecules.
    Kim MI; Cho MU; Hong M
    Biochem Biophys Res Commun; 2015 Mar; 458(3):644-649. PubMed ID: 25684184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of an engineered Cro monomer bound nonspecifically to DNA: possible implications for nonspecific binding by the wild-type protein.
    Albright RA; Mossing MC; Matthews BW
    Protein Sci; 1998 Jul; 7(7):1485-94. PubMed ID: 9684880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemistry. Completing the view of transcriptional regulation.
    von Hippel PH
    Science; 2004 Jul; 305(5682):350-2. PubMed ID: 15256661
    [No Abstract]   [Full Text] [Related]  

  • 36. A map of the biotin repressor-biotin operator interface: binding of a winged helix-turn-helix protein dimer to a forty base-pair site.
    Streaker ED; Beckett D
    J Mol Biol; 1998 May; 278(4):787-800. PubMed ID: 9614942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans.
    Tan BG; Vijgenboom E; Worrall JA
    Nucleic Acids Res; 2014 Jan; 42(2):1326-40. PubMed ID: 24121681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors.
    Davis JR; Brown BL; Page R; Sello JK
    Nucleic Acids Res; 2013 Apr; 41(6):3888-900. PubMed ID: 23396446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain.
    Nagadoi A; Morikawa S; Nakamura H; Enari M; Kobayashi K; Yamamoto H; Sampei G; Mizobuchi K; Schumacher MA; Brennan RG
    Structure; 1995 Nov; 3(11):1217-24. PubMed ID: 8591032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves.
    Agriesti F; Roncarati D; Musiani F; Del Campo C; Iurlaro M; Sparla F; Ciurli S; Danielli A; Scarlato V
    Nucleic Acids Res; 2014 Mar; 42(5):3138-51. PubMed ID: 24322295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.