These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24294548)

  • 41. JCBIE: a joint continual learning neural network for biomedical information extraction.
    He K; Mao R; Gong T; Cambria E; Li C
    BMC Bioinformatics; 2022 Dec; 23(1):549. PubMed ID: 36536280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple features for clinical relation extraction: A machine learning approach.
    Alimova I; Tutubalina E
    J Biomed Inform; 2020 Mar; 103():103382. PubMed ID: 32028051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FamPlex: a resource for entity recognition and relationship resolution of human protein families and complexes in biomedical text mining.
    Bachman JA; Gyori BM; Sorger PK
    BMC Bioinformatics; 2018 Jun; 19(1):248. PubMed ID: 29954318
    [TBL] [Abstract][Full Text] [Related]  

  • 45. POSBIOTM-NER: a trainable biomedical named-entity recognition system.
    Song Y; Kim E; Lee GG; Yi BK
    Bioinformatics; 2005 Jun; 21(11):2794-6. PubMed ID: 15814561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A neural network-based joint learning approach for biomedical entity and relation extraction from biomedical literature.
    Luo L; Yang Z; Cao M; Wang L; Zhang Y; Lin H
    J Biomed Inform; 2020 Mar; 103():103384. PubMed ID: 32032717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.
    Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G
    J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomedical named entity recognition using two-phase model based on SVMs.
    Lee KJ; Hwang YS; Kim S; Rim HC
    J Biomed Inform; 2004 Dec; 37(6):436-47. PubMed ID: 15542017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition.
    Xu K; Yang Z; Kang P; Wang Q; Liu W
    Comput Biol Med; 2019 May; 108():122-132. PubMed ID: 31003175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating heterogeneous protein annotations toward cross-corpora utilization.
    Wang Y; Kim JD; Saetre R; Pyysalo S; Tsujii J
    BMC Bioinformatics; 2009 Dec; 10():403. PubMed ID: 19995463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of disease named entity recognition on a corpus of annotated sentences.
    Jimeno A; Jimenez-Ruiz E; Lee V; Gaudan S; Berlanga R; Rebholz-Schuhmann D
    BMC Bioinformatics; 2008 Apr; 9 Suppl 3(Suppl 3):S3. PubMed ID: 18426548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Semi-supervised method for biomedical event extraction.
    Wang J; Xu Q; Lin H; Yang Z; Li Y
    Proteome Sci; 2013 Nov; 11(Suppl 1):S17. PubMed ID: 24565105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition.
    Tsai RT; Sung CL; Dai HJ; Hung HC; Sung TY; Hsu WL
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S11. PubMed ID: 17254295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction.
    Lee MC; Boroczky L; Sungur-Stasik K; Cann AD; Borczuk AC; Kawut SM; Powell CA
    Artif Intell Med; 2010 Sep; 50(1):43-53. PubMed ID: 20570118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study.
    Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H
    JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach.
    Batbaatar E; Ryu KH
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PASCAL: a pseudo cascade learning framework for breast cancer treatment entity normalization in Chinese clinical text.
    An Y; Wang J; Zhang L; Zhao H; Gao Z; Huang H; Du Z; Jiao Z; Yan J; Wei X; Jin B
    BMC Med Inform Decis Mak; 2020 Aug; 20(1):204. PubMed ID: 32859189
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A hybrid deep learning framework for bacterial named entity recognition with domain features.
    Li X; Fu C; Zhong R; Zhong D; He T; Jiang X
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):583. PubMed ID: 31787075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics.
    Batista-Navarro R; Rak R; Ananiadou S
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S6. PubMed ID: 25810777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.