BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24294979)

  • 1. Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides.
    Alhakamy NA; Kaviratna A; Berkland CJ; Dhar P
    Langmuir; 2013 Dec; 29(49):15336-49. PubMed ID: 24294979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lipid headgroup charge and pH on the stability and membrane insertion potential of calcium condensed gene complexes.
    Alhakamy NA; Elandaloussi I; Ghazvini S; Berkland CJ; Dhar P
    Langmuir; 2015 Apr; 31(14):4232-45. PubMed ID: 25768428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides.
    Damiati SA; Alaofi AL; Dhar P; Alhakamy NA
    Int J Pharm; 2019 Aug; 567():118453. PubMed ID: 31233847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative Dipole Potentials and Carboxylic Polar Head Groups Foster the Insertion of Cell-Penetrating Peptides into Lipid Monolayers.
    Via MA; Del Pópolo MG; Wilke N
    Langmuir; 2018 Mar; 34(9):3102-3111. PubMed ID: 29394073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical Insight on the Membrane Insertion of an Arginine-Rich Cell-Penetrating Peptide.
    Jobin ML; Vamparys L; Deniau R; Grélard A; Mackereth CD; Fuchs PFJ; Alves ID
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane.
    Anko M; Majhenc J; Kogej K; Sillard R; Langel U; Anderluh G; Zorko M
    Biochim Biophys Acta; 2012 Mar; 1818(3):915-24. PubMed ID: 22240008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers.
    Tsuchiya K; Horikoshi K; Fujita M; Hirano M; Miyamoto M; Yokoo H; Demizu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transdermal Properties of Cell-Penetrating Peptides: Applications and Skin Penetration Mechanisms.
    Shin HJ; Lee BK; Kang HA
    ACS Appl Bio Mater; 2024 Jan; 7(1):1-16. PubMed ID: 38079575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of lipid membrane based assays to accurately predict the transfection efficiency of cell-penetrating peptide-based gene nanoparticles.
    Alhakamy NA; Alaofi AL; Ahmed OAA; Fahmy UA; Md S; Abdulaal WH; Alfaleh MA; Chakraborty A; Berkland CJ; Dhar P
    Int J Pharm; 2020 Apr; 580():119221. PubMed ID: 32165227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery.
    Di Pisa M; Chassaing G; Swiecicki JM
    J Pept Sci; 2015 May; 21(5):356-69. PubMed ID: 25787823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell penetrating peptides: the potent multi-cargo intracellular carriers.
    Kardani K; Milani A; H Shabani S; Bolhassani A
    Expert Opin Drug Deliv; 2019 Nov; 16(11):1227-1258. PubMed ID: 31583914
    [No Abstract]   [Full Text] [Related]  

  • 16. Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches.
    Kardani K; Bolhassani A
    PLoS One; 2021; 16(2):e0247396. PubMed ID: 33606823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell penetration: scope and limitations by the application of cell-penetrating peptides.
    Reissmann S
    J Pept Sci; 2014 Oct; 20(10):760-84. PubMed ID: 25112216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New generation of cell-penetrating peptides: Functionality and potential clinical application.
    Reissmann S; Filatova MP
    J Pept Sci; 2021 May; 27(5):e3300. PubMed ID: 33615648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors.
    Hemmati S; Behzadipour Y; Haddad M
    Infect Genet Evol; 2020 Nov; 85():104474. PubMed ID: 32712315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.