These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Reducing the actuation threshold by incorporating a nonliquid crystal chain into a liquid crystal elastomer. Niu H; Wang Y; Wang J; Yang W; Dong Y; Bi M; Zhang J; Xu J; Bi S; Wang B; Gao Y; Li C; Zhang J RSC Adv; 2018 Jan; 8(9):4857-4866. PubMed ID: 35539513 [TBL] [Abstract][Full Text] [Related]
10. Direct shape programming of liquid crystal elastomers. Barnes M; Verduzco R Soft Matter; 2019 Jan; 15(5):870-879. PubMed ID: 30628627 [TBL] [Abstract][Full Text] [Related]
11. Shape Permanence in Diarylethene-Functionalized Liquid-Crystal Elastomers Facilitated by Thiol-Anhydride Dynamic Chemistry. Hebner TS; Podgórski M; Mavila S; White TJ; Bowman CN Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202116522. PubMed ID: 35023253 [TBL] [Abstract][Full Text] [Related]
12. Slow dynamics of shape recovery of disordered nematic elastomers. Urayama K; Honda S; Takigawa T Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041709. PubMed ID: 17155080 [TBL] [Abstract][Full Text] [Related]
13. Effect of Isomeric Amine Chain Extenders and Crosslink Density on the Properties of Liquid Crystal Elastomers. Lee Y; Choi S; Kang BG; Ahn SK Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664370 [TBL] [Abstract][Full Text] [Related]
14. Instant Locking of Molecular Ordering in Liquid Crystal Elastomers by Oxygen-Mediated Thiol-Acrylate Click Reactions. Xia Y; Zhang X; Yang S Angew Chem Int Ed Engl; 2018 May; 57(20):5665-5668. PubMed ID: 29673017 [TBL] [Abstract][Full Text] [Related]
15. Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds. Wang Z; Tian H; He Q; Cai S ACS Appl Mater Interfaces; 2017 Sep; 9(38):33119-33128. PubMed ID: 28879760 [TBL] [Abstract][Full Text] [Related]
16. Programmable Complex Shape Changing of Polysiloxane Main-Chain Liquid Crystalline Elastomers. Zhang Y; Wang X; Yang W; Yan H; Zhang X; Han D; He Y; Li C; Sun L Molecules; 2023 Jun; 28(12):. PubMed ID: 37375413 [TBL] [Abstract][Full Text] [Related]
17. Artificial muscles based on liquid crystal elastomers. Li MH; Keller P Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2763-77. PubMed ID: 16973488 [TBL] [Abstract][Full Text] [Related]
18. Slidable Cross-Linking Effect on Liquid Crystal Elastomers: Enhancement of Toughness, Shape-Memory, and Self-Healing Properties. Choi S; Kim B; Park S; Seo JH; Ahn SK ACS Appl Mater Interfaces; 2022 Jul; 14(28):32486-32496. PubMed ID: 35792581 [TBL] [Abstract][Full Text] [Related]
19. Understanding the effect of liquid crystal content on the phase behavior and mechanical properties of liquid crystal elastomers. Barnes M; Cetinkaya S; Ajnsztajn A; Verduzco R Soft Matter; 2022 Jul; 18(27):5074-5081. PubMed ID: 35764591 [TBL] [Abstract][Full Text] [Related]
20. Recent Advances in 4D Printing of Liquid Crystal Elastomers. Chen M; Gao M; Bai L; Zheng H; Qi HJ; Zhou K Adv Mater; 2023 Jun; 35(23):e2209566. PubMed ID: 36461147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]