BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 24295225)

  • 1. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.
    Meng F; Estruga M; Forticaux A; Morin SA; Wu Q; Hu Z; Jin S
    ACS Nano; 2013 Dec; 7(12):11369-78. PubMed ID: 24295225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zn-dopant dependent defect evolution in GaN nanowires.
    Yang B; Liu B; Wang Y; Zhuang H; Liu Q; Yuan F; Jiang X
    Nanoscale; 2015 Oct; 7(39):16237-45. PubMed ID: 26371967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High optical quality single crystal phase wurtzite and zincblende InP nanowires.
    Vu TT; Zehender T; Verheijen MA; Plissard SR; Immink GW; Haverkort JE; Bakkers EP
    Nanotechnology; 2013 Mar; 24(11):115705. PubMed ID: 23455417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screw dislocation driven growth of nanomaterials.
    Meng F; Morin SA; Forticaux A; Jin S
    Acc Chem Res; 2013 Jul; 46(7):1616-26. PubMed ID: 23738750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exceptional Deformability of Wurtzite Zinc Oxide Nanowires with Growth Axial Stacking Faults.
    Liu Q; Nie Y; Shang J; Kou L; Zhan H; Sun Z; Bo A; Gu Y
    Nano Lett; 2021 May; 21(10):4327-4334. PubMed ID: 33989003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal phase engineered quantum wells in ZnO nanowires.
    Khranovskyy V; Glushenkov AM; Chen Y; Khalid A; Zhang H; Hultman L; Monemar B; Yakimova R
    Nanotechnology; 2013 May; 24(21):215202. PubMed ID: 23619281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dislocation-driven CdS and CdSe nanowire growth.
    Wu H; Meng F; Li L; Jin S; Zheng G
    ACS Nano; 2012 May; 6(5):4461-8. PubMed ID: 22519752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal phase evolution in kinked GaN nanowires.
    Wu S; Wu S; Song W; Wang L; Yi X; Liu Z; Wang J; Li J
    Nanotechnology; 2020 Apr; 31(14):145713. PubMed ID: 31860878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation induced microtwins and stacking faults in aluminum single crystal.
    Han WZ; Cheng GM; Li SX; Wu SD; Zhang ZF
    Phys Rev Lett; 2008 Sep; 101(11):115505. PubMed ID: 18851297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions.
    Fakhr A; Haddara YM; Lapierre RR
    Nanotechnology; 2010 Apr; 21(16):165601. PubMed ID: 20348594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires.
    Chen Y; Burgess T; An X; Mai YW; Tan HH; Zou J; Ringer SP; Jagadish C; Liao X
    Nano Lett; 2016 Mar; 16(3):1911-6. PubMed ID: 26885570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of crystal structure on the Young's modulus of GaP nanowires.
    Alekseev PA; Borodin BR; Geydt P; Khayrudinov V; Bespalova K; Kirilenko DA; Reznik RR; Nashchekin AV; Haggrén T; Lähderanta E; Cirlin GE; Lipsanen H; Dunaevskiy MS
    Nanotechnology; 2021 Jul; 32(38):. PubMed ID: 34116523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
    Shapiro JN; Lin A; Ratsch C; Huffaker DL
    Nanotechnology; 2013 Nov; 24(47):475601. PubMed ID: 24192402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy.
    Zhuang QD; Anyebe EA; Chen R; Liu H; Sanchez AM; Rajpalke MK; Veal TD; Wang ZM; Huang YZ; Sun HD
    Nano Lett; 2015 Feb; 15(2):1109-16. PubMed ID: 25559370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative recombination mechanisms in individual wurtzite ZnSe nanowires with a defect-free single-crystalline microstructure.
    Saxena A; Pan Q; Ruda HE
    Nanoscale; 2013 Apr; 5(7):2875-82. PubMed ID: 23446447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.
    Liu B; Yang B; Yuan F; Liu Q; Shi D; Jiang C; Zhang J; Staedler T; Jiang X
    Nano Lett; 2015 Dec; 15(12):7837-46. PubMed ID: 26517395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.
    Jia S; Hu S; Zheng H; Wei Y; Meng S; Sheng H; Liu H; Zhou S; Zhao D; Wang J
    Nano Lett; 2018 Jul; 18(7):4095-4099. PubMed ID: 29879357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals.
    Wang JW; Narayanan S; Huang JY; Zhang Z; Zhu T; Mao SX
    Nat Commun; 2013; 4():2340. PubMed ID: 23945977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of planar defects in ZnO nanobelts and nanowires.
    Ding Y; Wang ZL
    Micron; 2009 Apr; 40(3):335-42. PubMed ID: 19081262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.