BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24295429)

  • 21. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material.
    Rathbone S; Furrer P; Lübben J; Zinn M; Cartmell S
    J Biomed Mater Res A; 2010 Jun; 93(4):1391-403. PubMed ID: 19911384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response.
    Ying TH; Ishii D; Mahara A; Murakami S; Yamaoka T; Sudesh K; Samian R; Fujita M; Maeda M; Iwata T
    Biomaterials; 2008 Apr; 29(10):1307-17. PubMed ID: 18155139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soyprotein fibers with high strength and water stability for potential medical applications.
    Reddy N; Yang Y
    Biotechnol Prog; 2009; 25(6):1796-802. PubMed ID: 19637391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospinning of fibrous polymer scaffolds using positive voltage or negative voltage: a comparative study.
    Tong HW; Wang M
    Biomed Mater; 2010 Oct; 5(5):054110. PubMed ID: 20876963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering.
    Shi J; Wang L; Zhang F; Li H; Lei L; Liu L; Chen Y
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1025-30. PubMed ID: 20423122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells.
    Lü LX; Wang YY; Mao X; Xiao ZD; Huang NP
    Biomed Mater; 2012 Feb; 7(1):015002. PubMed ID: 22262727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units.
    Zhila N; Shishatskaya E
    Int J Biol Macromol; 2018 May; 111():1019-1026. PubMed ID: 29360547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospinning of nanocomposite fibrillar tubular and flat scaffolds with controlled fiber orientation.
    Salifu AA; Nury BD; Lekakou C
    Ann Biomed Eng; 2011 Oct; 39(10):2510-20. PubMed ID: 21769540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resorbable Nanomatrices from Microbial Polyhydroxyalkanoates: Design Strategy and Characterization.
    Shishatskaya EI; Dudaev AE; Volova TG
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering.
    Kim YH; Min YK; Lee BT
    J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of the chemical composition and structure of polymer films made from resorbable polyhydroxyalkanoates on blood cell response.
    Shishatskaya EI; Menzyanova NG; Shumilova AA
    Int J Biol Macromol; 2019 Dec; 141():765-775. PubMed ID: 31493452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse release behaviors of water-soluble bioactive substances from fibrous membranes prepared by emulsion and suspension electrospinning.
    Han F; Zhang H; Zhao J; Zhao Y; Yuan X
    J Biomater Sci Polym Ed; 2013; 24(10):1244-59. PubMed ID: 23713426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering.
    Xu H; Cai S; Xu L; Yang Y
    Langmuir; 2014 Jul; 30(28):8461-70. PubMed ID: 25010870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes.
    Bashur CA; Dahlgren LA; Goldstein AS
    Biomaterials; 2006 Nov; 27(33):5681-8. PubMed ID: 16914196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.