BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24295695)

  • 1. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions.
    Petrozziello M; Asproudi A; Guaita M; Borsa D; Motta S; Panero L; Bosso A
    Food Chem; 2014 Apr; 149():197-202. PubMed ID: 24295695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple, cheap and reliable method for control of 4-ethylphenol and 4-ethylguaiacol in red wines. Screening of fining agents for reducing volatile phenols levels in red wines.
    Milheiro J; Filipe-Ribeiro L; Cosme F; Nunes FM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1041-1042():183-190. PubMed ID: 27852533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions Among Odorants, Phenolic Compounds, and Oral Components and Their Effects on Wine Aroma Volatility.
    Perez-Jiménez M; Esteban-Fernández A; Muñoz-González C; Pozo-Bayón MA
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing the negative sensory impact of volatile phenols in red wine with different chitosans: Effect of structure on efficiency.
    Filipe-Ribeiro L; Cosme F; Nunes FM
    Food Chem; 2018 Mar; 242():591-600. PubMed ID: 29037734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: Impact on wine quality.
    Filipe-Ribeiro L; Milheiro J; Matos CC; Cosme F; Nunes FM
    Food Chem; 2017 Aug; 229():242-251. PubMed ID: 28372170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.
    Gallardo-Chacón JJ; Karbowiak T
    Food Chem; 2015 Aug; 181():222-6. PubMed ID: 25794743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of 4-ethylguaiacol and 4-ethylphenol in red wines using headspace-solid-phase microextraction-gas chromatography.
    Martorell N; Martí MP; Mestres M; Busto O; Guasch J
    J Chromatogr A; 2002 Nov; 975(2):349-54. PubMed ID: 12456088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4-ethylphenol and 4-ethylguaiacol in wines: estimating non-microbial sourced contributions and toxicological considerations.
    Rayne S; Eggers NJ
    J Environ Sci Health B; 2007 Nov; 42(8):887-97. PubMed ID: 17978957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of 4-ethylguaiacol and 4-ethylphenol on yeast cell walls, using a synthetic wine.
    Nieto-Rojo R; Ancín-Azpilicueta C; Garrido JJ
    Food Chem; 2014; 152():399-406. PubMed ID: 24444954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple headspace solid-phase microextraction for eliminating matrix effect in the simultaneous determination of haloanisoles and volatile phenols in wines.
    Pizarro C; Pérez-del-Notario N; González-Sáiz JM
    J Chromatogr A; 2007 Sep; 1166(1-2):1-8. PubMed ID: 17727868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of phenolic compounds on the sensorial perception and volatility of red wine esters in model solution: an insight at the molecular level.
    Lorrain B; Tempere S; Iturmendi N; Moine V; de Revel G; Teissedre PL
    Food Chem; 2013 Sep; 140(1-2):76-82. PubMed ID: 23578617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of ethylphenols in wine by in situ derivatisation and headspace solid-phase microextraction-gas chromatography-mass spectrometry.
    Carrillo JD; Tena MT
    Anal Bioanal Chem; 2007 Apr; 387(7):2547-58. PubMed ID: 17225107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binding of 4-ethylguaiacol with polyaniline-based materials in wines.
    Marican A; Carrasco-Sánchez V; John A; Laurie VF; Santos LS
    Food Chem; 2014 Sep; 159():486-92. PubMed ID: 24767086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Brett character responsible compounds in wines by using multiple headspace solid-phase microextraction.
    Pizarro C; Pérez-del-Notario N; González-Sáiz JM
    J Chromatogr A; 2007 Mar; 1143(1-2):176-81. PubMed ID: 17210155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filter-vial dispersive solid-phase extraction as a simplified clean-up for determination of ethylphenols in red wines.
    Fontana AR; Bottini R
    Food Chem; 2017 Sep; 230():405-410. PubMed ID: 28407929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma.
    Curtin CD; Langhans G; Henschke PA; Grbin PR
    Food Microbiol; 2013 Dec; 36(2):241-7. PubMed ID: 24010603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of 4-Ethylphenol and 4-Ethylguaiacol with Polyaniline-Based Compounds in Wine-Like Model Solutions and Red Wine.
    Carrasco-Sánchez V; John A; Marican A; Santos LS; Laurie VF
    Molecules; 2015 Aug; 20(8):14312-25. PubMed ID: 26251893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches.
    Milheiro J; Filipe-Ribeiro L; Vilela A; Cosme F; Nunes FM
    Crit Rev Food Sci Nutr; 2019; 59(9):1367-1391. PubMed ID: 29257912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of 4-ethylphenol and 4-ethylguaiacol in red wine.
    Pollnitz AP; Pardon KH; Sefton MA
    J Chromatogr A; 2000 Mar; 874(1):101-9. PubMed ID: 10768504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction and formation dynamic of oak-related volatile compounds from different volume barrels to wine and their behavior during bottle storage.
    Pérez-Prieto LJ; López-Roca JM; Martínez-Cutillas A; Pardo-Mínguez F; Gómez-Plaza E
    J Agric Food Chem; 2003 Aug; 51(18):5444-9. PubMed ID: 12926895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.