BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24295711)

  • 21. A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility.
    Yan C; McClements DJ; Zou L; Liu W
    Food Funct; 2019 Sep; 10(9):5446-5460. PubMed ID: 31403644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement of physicochemical properties of lycopene by the self-assembly encapsulation of recombinant ferritin GF1 from oyster (Crassostrea gigas).
    Xia X; Li H; Xu X; Wu C; Wang Z; Zhao G; Du M
    J Sci Food Agric; 2024 Mar; 104(5):2783-2791. PubMed ID: 38009805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Size Flexibility of Ferritin Nanocage Opens a New Way to Prepare Nanomaterials.
    Zhang S; Zang J; Chen H; Li M; Xu C; Zhao G
    Small; 2017 Oct; 13(37):. PubMed ID: 28786527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions.
    Salvia-Trujillo L; Qian C; Martín-Belloso O; McClements DJ
    Food Chem; 2013 Aug; 139(1-4):878-84. PubMed ID: 23561185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility.
    Qian C; Decker EA; Xiao H; McClements DJ
    Food Chem; 2012 Dec; 135(3):1440-7. PubMed ID: 22953878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High internal phase double emulsions stabilized by modified pea protein-alginate complexes: Application for co-encapsulation of riboflavin and β-carotene.
    Yan X; Yan J; Shi X; Song Y; McClements DJ; Ma C; Liu X; Chen S; Xu D; Liu F
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132313. PubMed ID: 38740156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation of β-carotene in oleogel-in-water Pickering emulsion with improved stability and bioaccessibility.
    Qi W; Zhang Z; Wu T
    Int J Biol Macromol; 2020 Dec; 164():1432-1442. PubMed ID: 32735920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives.
    Yang R; Tian J; Liu Y; Yang Z; Wu D; Zhou Z
    J Agric Food Chem; 2017 Nov; 65(46):9950-9955. PubMed ID: 29037043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of lipid nanoparticle physical state on β-carotene stability kinetics under different environmental conditions.
    de Abreu Martins HH; Turmo-Ibarz A; Hilsdorf Piccoli R; Martín-Belloso O; Salvia-Trujillo L
    Food Funct; 2021 Jan; 12(2):840-851. PubMed ID: 33404565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of heating and illumination on trans-cis isomerization and degradation of beta-carotene and lutein in isolated spinach chloroplasts.
    Aman R; Schieber A; Carle R
    J Agric Food Chem; 2005 Nov; 53(24):9512-8. PubMed ID: 16302770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encapsulation of Beta-carotene in Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate: Production Parameters, Alpha-tocopherol Coencapsulation and Stability Under Stress Conditions.
    Brito-Oliveira TC; Molina CV; Netto FM; Pinho SC
    J Food Sci; 2017 Mar; 82(3):659-669. PubMed ID: 28182846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.
    Harnkarnsujarit N; Charoenrein S; Roos YH
    J Agric Food Chem; 2012 Sep; 60(38):9711-8. PubMed ID: 22950885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical and chemical stability of β-carotene nanoemulsions during storage and thermal process.
    Borba CM; Tavares MN; Macedo LP; Araújo GS; Furlong EB; Dora CL; Burkert JFM
    Food Res Int; 2019 Jul; 121():229-237. PubMed ID: 31108744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microencapsulated β-carotene preparation using different drying treatments.
    Li XY; Wu MB; Xiao M; Lu SH; Wang ZM; Yao JM; Yang LR
    J Zhejiang Univ Sci B; 2019 Nov.; 20(11):901-909. PubMed ID: 31595726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopy analysis for simultaneous determination of lycopene and β-carotene in fungal biomass of Blakeslea trispora.
    Soroka IM; Narushin VG; Turiyansky YD; Tyurenkov AA
    Acta Biochim Pol; 2012; 59(1):65-9. PubMed ID: 22428112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial engineering using mixed protein systems: emulsion-based delivery systems for encapsulation and stabilization of β-carotene.
    Mao Y; Dubot M; Xiao H; McClements DJ
    J Agric Food Chem; 2013 May; 61(21):5163-9. PubMed ID: 23647430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved stability and aqueous solubility of β-carotene via encapsulation in self-assembled bioactive oleanolic acid nanoparticles.
    Liu S; Zhang J; Fu R; Feng H; Chu Y; Huang D; Liu H; Li C; Ma C; Abd El-Aty AM
    Food Chem; 2022 Mar; 373(Pt B):131498. PubMed ID: 34753075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds.
    Wang R; Tian Z; Chen L
    Int J Pharm; 2011 Mar; 406(1-2):153-62. PubMed ID: 21219995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly(lactide) nanomicelles.
    Ge W; Li D; Chen M; Wang X; Liu S; Sun R
    Carbohydr Polym; 2015 Mar; 117():169-176. PubMed ID: 25498622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of β-carotene in amorphous polymer matrices. Effect of water sorption properties and physical state.
    Ramoneda XA; Ponce-Cevallos PA; del Pilar Buera M; Elizalde BE
    J Sci Food Agric; 2011 Nov; 91(14):2587-93. PubMed ID: 21681762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.