BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24296049)

  • 1. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone.
    Bachand PA; Bachand S; Fleck J; Anderson F; Windham-Myers L
    Sci Total Environ; 2014 Jun; 484():232-48. PubMed ID: 24296049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone.
    Bachand PA; Bachand SM; Fleck JA; Alpers CN; Stephenson M; Windham-Myers L
    Sci Total Environ; 2014 Feb; 472():957-70. PubMed ID: 24345859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production.
    Windham-Myers L; Marvin-DiPasquale M; A Stricker C; Agee JL; H Kieu L; Kakouros E
    Sci Total Environ; 2014 Jun; 484():300-7. PubMed ID: 23809881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study.
    Windham-Myers L; Fleck JA; Ackerman JT; Marvin-DiPasquale M; Stricker CA; Heim WA; Bachand PA; Eagles-Smith CA; Gill G; Stephenson M; Alpers CN
    Sci Total Environ; 2014 Jun; 484():221-31. PubMed ID: 24530187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury cycling in agricultural and managed wetlands of California, USA: seasonal influences of vegetation on mercury methylation, storage, and transport.
    Windham-Myers L; Marvin-DiPasquale M; Kakouros E; Agee JL; Kieu le H; Stricker CA; Fleck JA; Ackerman JT
    Sci Total Environ; 2014 Jun; 484():308-18. PubMed ID: 23809880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprint of "Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone".
    Bachand PA; Bachand SM; Fleck JA; Alpers CN; Stephenson M; Windham-Myers L
    Sci Total Environ; 2014 Jun; 484():249-62. PubMed ID: 24666634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.
    Marvin-DiPasquale M; Windham-Myers L; Agee JL; Kakouros E; Kieu le H; Fleck JA; Alpers CN; Stricker CA
    Sci Total Environ; 2014 Jun; 484():288-99. PubMed ID: 24188689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors that influence methylmercury flux rates from wetland sediments.
    Holmes J; Lean D
    Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality.
    Alpers CN; Fleck JA; Marvin-DiPasquale M; Stricker CA; Stephenson M; Taylor HE
    Sci Total Environ; 2014 Jun; 484():276-87. PubMed ID: 24332791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-phase and transpiration-driven mechanisms for volatilization through wetland macrophytes.
    Reid MC; Jaffé PR
    Environ Sci Technol; 2012 May; 46(10):5344-52. PubMed ID: 22509995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.
    Headley TR; Davison L; Huett DO; Müller R
    Water Res; 2012 Feb; 46(2):345-54. PubMed ID: 22127043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.
    Wiessner A; Kappelmeyer U; Kaestner M; Schultze-Nobre L; Kuschk P
    Water Res; 2013 Sep; 47(13):4265-73. PubMed ID: 23764577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.
    Seeger EM; Maier U; Grathwohl P; Kuschk P; Kaestner M
    Water Res; 2013 Feb; 47(2):769-80. PubMed ID: 23200508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial distributions of sediment mercury at salt pond wetland restoration sites, San Francisco Bay, CA, USA.
    Miles AK; Ricca MA
    Sci Total Environ; 2010 Feb; 408(5):1154-65. PubMed ID: 19922978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina).
    Alvarez Mdel P; Carol E; Dapeña C
    Sci Total Environ; 2015 Feb; 506-507():299-307. PubMed ID: 25460963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands.
    Seeger EM; Reiche N; Kuschk P; Borsdorf H; Kaestner M
    Environ Sci Technol; 2011 Oct; 45(19):8467-74. PubMed ID: 21848285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling hydrological effects of wetland restoration: a differentiated view.
    Staes J; Rubarenzya MH; Meire P; Willems P
    Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash.
    Palmer-Felgate EJ; Mortimer RJ; Krom MD; Jarvie HP; Williams RJ; Spraggs RE; Stratford CJ
    Sci Total Environ; 2011 May; 409(11):2222-32. PubMed ID: 21420723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.