BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24296120)

  • 1. Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4.
    Nakanishi A; Aikawa S; Ho SH; Chen CY; Chang JS; Hasunuma T; Kondo A
    Bioresour Technol; 2014; 152():247-52. PubMed ID: 24296120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of microalgae for biodiesel production from seawater.
    Zhao L; Qi Y; Chen G
    Bioresour Technol; 2015 May; 184():42-46. PubMed ID: 25453432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity.
    Ho SH; Nakanishi A; Ye X; Chang JS; Chen CY; Hasunuma T; Kondo A
    Biotechnol Biofuels; 2015; 8():48. PubMed ID: 25802553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy.
    Ho SH; Nakanishi A; Ye X; Chang JS; Hara K; Hasunuma T; Kondo A
    Biotechnol Biofuels; 2014; 7():97. PubMed ID: 25002905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.
    Lin TS; Wu JY
    Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching.
    Kato Y; Ho SH; Vavricka CJ; Chang JS; Hasunuma T; Kondo A
    Bioresour Technol; 2017 Dec; 245(Pt B):1484-1490. PubMed ID: 28624244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.
    Ho SH; Nakanishi A; Kato Y; Yamasaki H; Chang JS; Misawa N; Hirose Y; Minagawa J; Hasunuma T; Kondo A
    Sci Rep; 2017 Apr; 7():45471. PubMed ID: 28374798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of the growth environment of microalgae with high biomass and lipid productivity.
    Huang YT; Lee HT; Lai CW
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2117-21. PubMed ID: 23755654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: evaluation of its growth and biochemical composition.
    Popovich CA; Damiani C; Constenla D; Martínez AM; Freije H; Giovanardi M; Pancaldi S; Leonardi PI
    Bioresour Technol; 2012 Jun; 114():287-93. PubMed ID: 22449985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feasibility of biodiesel production by microalgae using industrial wastewater.
    Wu LF; Chen PC; Huang AP; Lee CM
    Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating Nutritional Conditions and Salinity-Gradient Stress for Enhanced Lutein Production in Marine Microalga Chlamydomonas sp.
    Xie Y; Lu K; Zhao X; Ma R; Chen J; Ho SH
    Biotechnol J; 2019 Apr; 14(4):e1800380. PubMed ID: 30520272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths.
    Teo CL; Atta M; Bukhari A; Taisir M; Yusuf AM; Idris A
    Bioresour Technol; 2014 Jun; 162():38-44. PubMed ID: 24736210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp.
    Harwati TU; Willke T; Vorlop KD
    Bioresour Technol; 2012 Oct; 121():54-60. PubMed ID: 22858468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15.
    Xia L; Ge H; Zhou X; Zhang D; Hu C
    Bioresour Technol; 2013 Sep; 144():261-7. PubMed ID: 23876654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.
    Luangpipat T; Chisti Y
    J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval.
    Devi MP; Mohan SV
    Bioresour Technol; 2012 May; 112():116-23. PubMed ID: 22440578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae.
    Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK
    J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock.
    Yu X; Zhao P; He C; Li J; Tang X; Zhou J; Huang Z
    Bioresour Technol; 2012 Oct; 121():256-62. PubMed ID: 22858494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing biomass, lipid production, and nutrient utilization of the microalga Monoraphidium sp. QLZ-3 in walnut shell extracts supplemented with carbon dioxide.
    Dong X; Han B; Zhao Y; Ding W; Yu X
    Bioresour Technol; 2019 Sep; 287():121419. PubMed ID: 31078811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.