These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 24296120)
1. Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Nakanishi A; Aikawa S; Ho SH; Chen CY; Chang JS; Hasunuma T; Kondo A Bioresour Technol; 2014; 152():247-52. PubMed ID: 24296120 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of microalgae for biodiesel production from seawater. Zhao L; Qi Y; Chen G Bioresour Technol; 2015 May; 184():42-46. PubMed ID: 25453432 [TBL] [Abstract][Full Text] [Related]
3. Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Ho SH; Nakanishi A; Ye X; Chang JS; Chen CY; Hasunuma T; Kondo A Biotechnol Biofuels; 2015; 8():48. PubMed ID: 25802553 [TBL] [Abstract][Full Text] [Related]
4. Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Ho SH; Nakanishi A; Ye X; Chang JS; Hara K; Hasunuma T; Kondo A Biotechnol Biofuels; 2014; 7():97. PubMed ID: 25002905 [TBL] [Abstract][Full Text] [Related]
5. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
7. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Ho SH; Nakanishi A; Kato Y; Yamasaki H; Chang JS; Misawa N; Hirose Y; Minagawa J; Hasunuma T; Kondo A Sci Rep; 2017 Apr; 7():45471. PubMed ID: 28374798 [TBL] [Abstract][Full Text] [Related]
8. Engineering of the growth environment of microalgae with high biomass and lipid productivity. Huang YT; Lee HT; Lai CW J Nanosci Nanotechnol; 2013 Mar; 13(3):2117-21. PubMed ID: 23755654 [TBL] [Abstract][Full Text] [Related]
9. Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: evaluation of its growth and biochemical composition. Popovich CA; Damiani C; Constenla D; MartÃnez AM; Freije H; Giovanardi M; Pancaldi S; Leonardi PI Bioresour Technol; 2012 Jun; 114():287-93. PubMed ID: 22449985 [TBL] [Abstract][Full Text] [Related]
10. The feasibility of biodiesel production by microalgae using industrial wastewater. Wu LF; Chen PC; Huang AP; Lee CM Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054 [TBL] [Abstract][Full Text] [Related]
11. Manipulating Nutritional Conditions and Salinity-Gradient Stress for Enhanced Lutein Production in Marine Microalga Chlamydomonas sp. Xie Y; Lu K; Zhao X; Ma R; Chen J; Ho SH Biotechnol J; 2019 Apr; 14(4):e1800380. PubMed ID: 30520272 [TBL] [Abstract][Full Text] [Related]
12. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397 [TBL] [Abstract][Full Text] [Related]
13. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Teo CL; Atta M; Bukhari A; Taisir M; Yusuf AM; Idris A Bioresour Technol; 2014 Jun; 162():38-44. PubMed ID: 24736210 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Harwati TU; Willke T; Vorlop KD Bioresour Technol; 2012 Oct; 121():54-60. PubMed ID: 22858468 [TBL] [Abstract][Full Text] [Related]
15. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Xia L; Ge H; Zhou X; Zhang D; Hu C Bioresour Technol; 2013 Sep; 144():261-7. PubMed ID: 23876654 [TBL] [Abstract][Full Text] [Related]
16. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors. Luangpipat T; Chisti Y J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890 [TBL] [Abstract][Full Text] [Related]
17. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Devi MP; Mohan SV Bioresour Technol; 2012 May; 112():116-23. PubMed ID: 22440578 [TBL] [Abstract][Full Text] [Related]
18. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Yu X; Zhao P; He C; Li J; Tang X; Zhou J; Huang Z Bioresour Technol; 2012 Oct; 121():256-62. PubMed ID: 22858494 [TBL] [Abstract][Full Text] [Related]
20. Enhancing biomass, lipid production, and nutrient utilization of the microalga Monoraphidium sp. QLZ-3 in walnut shell extracts supplemented with carbon dioxide. Dong X; Han B; Zhao Y; Ding W; Yu X Bioresour Technol; 2019 Sep; 287():121419. PubMed ID: 31078811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]