BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24296662)

  • 1. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids.
    Milanowski R; Karnkowska A; Ishikawa T; Zakryś B
    Mol Biol Evol; 2014 Mar; 31(3):584-93. PubMed ID: 24296662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediate introns in nuclear genes of euglenids - are they a distinct type?
    Milanowski R; Gumińska N; Karnkowska A; Ishikawa T; Zakryś B
    BMC Evol Biol; 2016 Feb; 16():49. PubMed ID: 26923034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Type of Circular RNA derived from Nonconventional Introns in Nuclear Genes of Euglenids.
    Gumińska N; Zakryś B; Milanowski R
    J Mol Biol; 2021 Feb; 433(3):166758. PubMed ID: 33316270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis.
    Gumińska N; Płecha M; Zakryś B; Milanowski R
    PLoS Genet; 2018 Oct; 14(10):e1007761. PubMed ID: 30365503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?
    Doetsch NA; Thompson MD; Hallick RB
    Mol Biol Evol; 1998 Jan; 15(1):76-86. PubMed ID: 9491607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.
    Pombert JF; James ER; Janouškovec J; Keeling PJ
    PLoS One; 2012; 7(12):e53433. PubMed ID: 23300929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron position conservation across eukaryotic lineages in tubulin genes.
    Perumal BS; Sakharkar KR; Chow VT; Pandjassarame K; Sakharkar MK
    Front Biosci; 2005 Sep; 10():2412-9. PubMed ID: 15970504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages.
    Hudson AJ; McWatters DC; Bowser BA; Moore AN; Larue GE; Roy SW; Russell AG
    BMC Evol Biol; 2019 Aug; 19(1):162. PubMed ID: 31375061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences.
    Breglia SA; Slamovits CH; Leander BS
    J Eukaryot Microbiol; 2007; 54(1):86-92. PubMed ID: 17300525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a group I intron in the SSU rDNA of Ploeotia costata (Euglenozoa).
    Busse I; Preisfeld A
    Protist; 2003 Apr; 154(1):57-69. PubMed ID: 12812370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes.
    Karnkowska A; Bennett MS; Triemer RE
    Sci Rep; 2018 Oct; 8(1):16071. PubMed ID: 30375469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites.
    Turmel M; Gutell RR; Mercier JP; Otis C; Lemieux C
    J Mol Biol; 1993 Jul; 232(2):446-67. PubMed ID: 8393936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida).
    Yamaguchi A; Yubuki N; Leander BS
    BMC Evol Biol; 2012 Mar; 12():29. PubMed ID: 22401606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The marine red alga Chondrus crispus has a highly divergent beta-tubulin gene with a characteristic 5' intron: functional and evolutionary implications.
    Liaud MF; Brandt U; Cerff R
    Plant Mol Biol; 1995 May; 28(2):313-25. PubMed ID: 7599316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Euglena gracilis alpha-, beta- and gamma-tubulin genes: introns and pre-mRNA maturation.
    Canaday J; Tessier LH; Imbault P; Paulus F
    Mol Genet Genomics; 2001 Mar; 265(1):153-60. PubMed ID: 11370862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exon context and distribution of Euascomycetes rRNA spliceosomal introns.
    Bhattacharya D; Simon D; Huang J; Cannone JJ; Gutell RR
    BMC Evol Biol; 2003 Apr; 3():7. PubMed ID: 12716459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements.
    van der Burgt A; Severing E; de Wit PJ; Collemare J
    Curr Biol; 2012 Jul; 22(13):1260-5. PubMed ID: 22658596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In trangenic rice, alpha- and beta-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependent spatial expression.
    Gianì S; Altana A; Campanoni P; Morello L; Breviario D
    Transgenic Res; 2009 Apr; 18(2):151-62. PubMed ID: 18668337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.
    Thompson MD; Copertino DW; Thompson E; Favreau MR; Hallick RB
    Nucleic Acids Res; 1995 Dec; 23(23):4745-52. PubMed ID: 8532514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.