These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 24296682)

  • 1. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.
    Park Y; Kang D; Choi KS
    Phys Chem Chem Phys; 2014 Jan; 16(3):1238-46. PubMed ID: 24296682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.
    Seabold JA; Zhu K; Neale NR
    Phys Chem Chem Phys; 2014 Jan; 16(3):1121-31. PubMed ID: 24287501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Varying the Photoanode/Catalyst Interfacial Composition on Solar Water Oxidation: The Case of BiVO
    Hilbrands AM; Zhang S; Zhou C; Melani G; Wi DH; Lee D; Xi Z; Head AR; Liu M; Galli G; Choi KS
    J Am Chem Soc; 2023 Nov; 145(43):23639-23650. PubMed ID: 37850865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.
    Kim TW; Choi KS
    Science; 2014 Feb; 343(6174):990-4. PubMed ID: 24526312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mo-doped BiVO4 photoanodes synthesized by reactive sputtering.
    Chen L; Toma FM; Cooper JK; Lyon A; Lin Y; Sharp ID; Ager JW
    ChemSusChem; 2015 Mar; 8(6):1066-71. PubMed ID: 25705871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO
    Pattengale B; Huang J
    Phys Chem Chem Phys; 2016 Dec; 18(48):32820-32825. PubMed ID: 27883137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni-Doped BiVO
    Chen M; Chang X; Li C; Wang H; Jia L
    J Colloid Interface Sci; 2023 Jun; 640():162-169. PubMed ID: 36848769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CuSCN layer between BiVO
    Wang J; Sun J; Liu Y; Zhang X; Cheng K; Chen Y; Zhou F; Luo J; Li T; Guo J; Xu B
    J Colloid Interface Sci; 2024 Jul; 666():57-65. PubMed ID: 38583210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer.
    Kim TW; Choi KS
    J Phys Chem Lett; 2016 Feb; 7(3):447-51. PubMed ID: 26781042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green light all the way: Triple modification synergistic modification effect to enhance the photoelectrochemical water oxidation performance of BiVO
    Ge J; Wu L; Gao L; Niu H; Liu M; Zou Y; Wang J; Jin J
    J Colloid Interface Sci; 2025 Jan; 677(Pt A):90-98. PubMed ID: 39083895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO
    Wang J; Zhang Y; Bai J; Li J; Zhou C; Li L; Xie C; Zhou T; Zhu H; Zhou B
    J Colloid Interface Sci; 2023 Aug; 644():509-518. PubMed ID: 37019742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of charge separation and hole utilization in a Ni
    Tian K; Wu L; Chai H; Gao L; Wang M; Niu H; Chen L; Jin J
    J Colloid Interface Sci; 2023 Aug; 644():124-133. PubMed ID: 37105036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial hole transfer layers for a BiVO
    Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B
    Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the PEC and interfacial charge transfer kinetics at the Mo doped BiVO
    Kumar S; Ahirwar S; Satpati AK
    RSC Adv; 2019 Dec; 9(70):41368-41382. PubMed ID: 35540070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co
    Wang Y; Li F; Zhou X; Yu F; Du J; Bai L; Sun L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6911-6915. PubMed ID: 28474835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Hole Transport Layers Heterojunction and Band Alignment Engineered Mo:BiVO
    Wang G; Tang T; Ye KH; Ding X; Chen J; Zou W; Xiao Y; Li J; Zhao L; Chen C; Ge S; Li L; Wei X; Chen C; Cao Y; Lin Z; Zhang S
    Small; 2024 Sep; 20(37):e2403600. PubMed ID: 38949410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the Performance of BiVO
    Sun Q; Ren K; Qi L
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37833-37842. PubMed ID: 35957577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.