These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24296997)

  • 1. In vivo label-free microangiography by laser speckle imaging with intensity fluctuation modulation.
    Wang M; Zeng Y; Liang X; Feng G; Lu X; Chen J; Han D; Yang G
    J Biomed Opt; 2013 Dec; 18(12):126001. PubMed ID: 24296997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser speckle imaging based on intensity fluctuation modulation.
    Zeng Y; Wang M; Feng G; Liang X; Yang G
    Opt Lett; 2013 Apr; 38(8):1313-5. PubMed ID: 23595469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional evaluation of hemodynamic response during neural activation using optical microangiography integrated with dual-wavelength laser speckle imaging.
    Qin J; Shi L; Wang H; Reif R; Wang RK
    J Biomed Opt; 2014 Feb; 19(2):026013. PubMed ID: 24549439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser speckle auto-inverse covariance imaging for mean-invariant estimation of blood flow.
    Hong J; Shi L; Zhu X; Lu J; Li P
    Opt Lett; 2019 Dec; 44(23):5812-5815. PubMed ID: 31774786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds.
    Zhi Z; Qin J; An L; Wang RK
    Opt Lett; 2011 Aug; 36(16):3169-71. PubMed ID: 21847196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free 3D imaging of microstructure, blood, and lymphatic vessels within tissue beds in vivo.
    Zhi Z; Jung Y; Wang RK
    Opt Lett; 2012 Mar; 37(5):812-4. PubMed ID: 22378402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of optical flow algorithms to laser speckle imaging.
    Aminfar A; Davoodzadeh N; Aguilar G; Princevac M
    Microvasc Res; 2019 Mar; 122():52-59. PubMed ID: 30414869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic laser speckle angiography achieved by eigen-decomposition filtering.
    Li C; Wang R
    J Biophotonics; 2017 Jun; 10(6-7):805-810. PubMed ID: 27896946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temporal-resolution, full-field optical angiography based on short-time modulation depth for vascular occlusion tests.
    Liao R; Wang M; Han D; Huang Z; Zeng Y
    J Biomed Opt; 2016 Aug; 21(8):86002. PubMed ID: 27490222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography.
    Jung Y; Dziennis S; Zhi Z; Reif R; Zheng Y; Wang RK
    PLoS One; 2013; 8(2):e57976. PubMed ID: 23469122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full range complex ultrahigh sensitive optical microangiography.
    An L; Wang RK
    Opt Lett; 2011 Mar; 36(6):831-3. PubMed ID: 21403699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional blood flow imaging in volumetric optical microangiography achieved by digital frequency modulation.
    Wang RK
    Opt Lett; 2008 Aug; 33(16):1878-80. PubMed ID: 18709119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera.
    Wang J; Wang Y; Li B; Feng D; Lu J; Luo Q; Li P
    Opt Lett; 2013 Sep; 38(18):3690-2. PubMed ID: 24104848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speckle-based x-ray phase-contrast imaging with a laboratory source and the scanning technique.
    Zhou T; Zanette I; Zdora MC; Lundström U; Larsson DH; Hertz HM; Pfeiffer F; Burvall A
    Opt Lett; 2015 Jun; 40(12):2822-5. PubMed ID: 26076271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-depth-of-field full-field optical angiography.
    Wang M; Wu N; Huang H; Luo J; Lan G; Zeng Y; Wang X; Xiong H; Han D; Tan H
    J Biophotonics; 2019 May; 12(5):e201800329. PubMed ID: 30315638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping transverse velocity of particles in capillary vessels by time-varying laser speckle through perturbation analyses.
    Wang Y; Ma Z; Wang R
    Opt Lett; 2015 May; 40(9):1896-9. PubMed ID: 25927742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-based laser speckle imaging for the detection of pulsatile flow.
    Regan C; Yang BY; Mayzel KC; Ramirez-San-Juan JC; Wilder-Smith P; Choi B
    Lasers Surg Med; 2015 Aug; 47(6):520-5. PubMed ID: 26202900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a new high-resolution intraoperative imaging system (dual-image videoangiography, DIVA) to simultaneously visualize light and near-infrared fluorescence images of indocyanine green angiography.
    Sato T; Suzuki K; Sakuma J; Takatsu N; Kojima Y; Sugano T; Saito K
    Acta Neurochir (Wien); 2015 Sep; 157(8):1295-301. PubMed ID: 26148906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.
    Trägårdh J; Robb G; Gadalla KK; Cobb S; Travis C; Oppo GL; McConnell G
    Opt Lett; 2015 Aug; 40(15):3484-7. PubMed ID: 26258338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction.
    Li P; Zhou L; Ni Y; Ding Z; Li P
    J Biomed Opt; 2016 Aug; 21(8):86014. PubMed ID: 27557343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.