BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2429704)

  • 1. Transfer ribonucleic acid populations in concanavalin-A-stimulated bovine lymphocytes.
    Derwenskus KH; Sprinzl M
    Biochim Biophys Acta; 1986 Nov; 868(2-3):91-9. PubMed ID: 2429704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lymphocyte activation on transfer RNAs.
    Rasmussen K; Whelly S; Barker K
    Biochem Biophys Res Commun; 1991 Oct; 180(2):638-44. PubMed ID: 1953734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation.
    Kitchingman GR; Fournier MJ
    Biochemistry; 1977 May; 16(10):2213-20. PubMed ID: 324516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estradiol regulation of reactions involved in turnover of the amino acid acceptor terminus of tRNA in the rat uterus.
    Rasmussen K; Whelly S; Barker K
    Biochim Biophys Acta; 1988 Nov; 972(2):179-91. PubMed ID: 3191163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of estradiol on the amino acid-accepting activity of uterine tRNAs and their participation in protein synthesis.
    Lutz WH; Barker KL
    J Biol Chem; 1986 Aug; 261(24):11230-5. PubMed ID: 3015961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid.
    Herrington MD; Hawtrey AO
    Biochem J; 1970 Feb; 116(3):405-14. PubMed ID: 5435687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of colchicine on ribonucleic acid synthesis in concanavalin A-stimulated bovine lymphocytes.
    Hauser H; Knippers R; Schäfer KP; Sons W; Unsöld HJ
    Exp Cell Res; 1976 Oct; 102(1):79-84. PubMed ID: 824147
    [No Abstract]   [Full Text] [Related]  

  • 8. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu.
    Liu JC; Liu M; Horowitz J
    RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the levels of aminoacylation and contents of modified nucleotides between total tRNAs from N2- and NH4(+)-grown Azospirillum lipoferum cells.
    Jayabaskaran C; Sivakamasundari R
    Indian J Biochem Biophys; 1994 Dec; 31(6):454-8. PubMed ID: 7875713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceptor activity, isoacceptor profiles and function in protein synthesis of transfer RNAs from regenerating skeletal muscle.
    Jones GH
    Biochim Biophys Acta; 1983 Dec; 741(3):333-40. PubMed ID: 6557823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer ribonucleic acids from eleven immunoglobulin-secreting mouse plasmacytomas. Constant and variable chromatographic profiles compared with the myeloma protein sequences.
    Marini M; Mushinski JF
    Biochim Biophys Acta; 1979 Apr; 562(2):252-70. PubMed ID: 255344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro regeneration of resting lymphocytes from stimulated lymphocytes and its inhibition by insulin.
    Kumagai J; Akiyama H; Iwashita S; Iida H; Yahara I
    J Immunol; 1981 Apr; 126(4):1249-54. PubMed ID: 7009735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the CCA end of tRNA and its vicinity in aminoacylation.
    Tamura K; Hasegawa T
    Nucleic Acids Symp Ser; 1997; (37):133-4. PubMed ID: 9586035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer RNAs: electrostatic patterns and an early stage of recognition by synthetases and elongation factor EF-Tu.
    Polozov RV; Montrel M; Ivanov VV; Melnikov Y; Sivozhelezov VS
    Biochemistry; 2006 Apr; 45(14):4481-90. PubMed ID: 16584184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for defective transfer ribonucleic acid in polymyopathic hamsters and its inhibitory effect on protein synthesis.
    Bester AJ; Gevers W
    Biochem J; 1973 Feb; 132(2):203-14. PubMed ID: 4725037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starvation phase of Physarum polycephalum: characterization of transfer ribonucleic acid.
    Melera PW; Hession CA
    Mol Cell Biol; 1981 Jan; 1(1):13-20. PubMed ID: 6965092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are cyclic nucleotides involved in the initiation of mitogenic activation of human lymphocytes?
    Kaever V; Resch K
    Biochim Biophys Acta; 1985 Aug; 846(2):216-25. PubMed ID: 2411297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs.
    Hunter SE; Spremulli LL
    RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation.
    Wellner K; Betat H; Mörl M
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):433-441. PubMed ID: 29374586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.