These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24297250)

  • 1. Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes.
    Iandolo B; Wickman B; Seger B; Chorkendorff I; Zorić I; Hellman A
    Phys Chem Chem Phys; 2014 Jan; 16(3):1271-5. PubMed ID: 24297250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films.
    Iandolo B; Antosiewicz TJ; Hellman A; Zorić I
    Phys Chem Chem Phys; 2013 Apr; 15(14):4947-54. PubMed ID: 23439980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.
    Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R
    ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting.
    Marelli M; Naldoni A; Minguzzi A; Allieta M; Virgili T; Scavia G; Recchia S; Psaro R; Dal Santo V
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11997-2004. PubMed ID: 25007400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.
    Kim JY; Youn DH; Kim JH; Kim HG; Lee JS
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14123-9. PubMed ID: 26046296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous water oxidation at hematite (α-Fe2O3) crystal faces.
    Chatman S; Zarzycki P; Rosso KM
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1550-9. PubMed ID: 25506667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of surface States in the oxygen evolution reaction on hematite.
    Iandolo B; Hellman A
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13404-8. PubMed ID: 25283270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis.
    Yan D; Tao J; Kisslinger K; Cen J; Wu Q; Orlov A; Liu M
    Nanoscale; 2015 Nov; 7(44):18515-23. PubMed ID: 26499938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting.
    Yang Y; Forster M; Ling Y; Wang G; Zhai T; Tong Y; Cowan AJ; Li Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3403-7. PubMed ID: 26847172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.