BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24297326)

  • 41. Thermal-Oxidation Stability of Soybean Germ Phytosterols in Different Lipid Matrixes.
    Chen J; Li D; Tang G; Zhou J; Liu W; Bi Y
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32906624
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.
    Ochando T; Mouret JR; Humbert-Goffard A; Sablayrolles JM; Farines V
    Food Res Int; 2017 Aug; 98():87-94. PubMed ID: 28610736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis.
    Wang L; Wu D; Tang P; Yuan Q
    Bioprocess Biosyst Eng; 2013 Aug; 36(8):1053-61. PubMed ID: 23138642
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Górnaś P; Rudzińska M; Grygier A; Sahu PK; Patel KS
    Nat Prod Res; 2020 Jan; 34(2):296-299. PubMed ID: 30406669
    [No Abstract]   [Full Text] [Related]  

  • 45. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.
    Hiromori K; Shibasaki-Kitakawa N; Nakashima K; Yonemoto T
    Food Chem; 2016 Mar; 194():1-5. PubMed ID: 26471519
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application.
    Francavilla M; Trotta P; Luque R
    Bioresour Technol; 2010 Jun; 101(11):4144-50. PubMed ID: 20110165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO
    Jafarian Asl P; Niazmand R; Yahyavi F
    Heliyon; 2020 Mar; 6(3):e03592. PubMed ID: 32258458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant sterol-enriched margarines and reduction of plasma total- and LDL-cholesterol concentrations in normocholesterolaemic and mildly hypercholesterolaemic subjects.
    Weststrate JA; Meijer GW
    Eur J Clin Nutr; 1998 May; 52(5):334-43. PubMed ID: 9630383
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.
    Xie W; Yang D
    Bioresour Technol; 2011 Oct; 102(20):9818-22. PubMed ID: 21871795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.
    Wang L; Tang P; Fan X; Yuan Q
    Biotechnol Prog; 2013; 29(5):1181-9. PubMed ID: 23843370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor.
    Kwon SG; Park SW; Oh DK
    J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.
    Mateo S; Puentes JG; Moya AJ; Sánchez S
    Bioresour Technol; 2015 Aug; 190():1-6. PubMed ID: 25916261
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioprocess development for the production of novel oleogels from soybean and microbial oils.
    Papadaki A; Kopsahelis N; Mallouchos A; Mandala I; Koutinas AA
    Food Res Int; 2019 Dec; 126():108684. PubMed ID: 31732046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of quorum sensing effects of tyrosol on fermentative performance by chief ethnic fermentative yeasts from northeast India.
    Nath BJ; Mishra AK; Sarma HK
    J Appl Microbiol; 2021 Aug; 131(2):728-742. PubMed ID: 33103297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Reinforcement of sterols production through directed storage and transportation in yeast: a review].
    Ke X; Shen Y; Cao L; Zhang B; Liu Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Nov; 37(11):3975-3987. PubMed ID: 34859638
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.
    Boerman JP; Lock AL
    J Dairy Sci; 2014 Nov; 97(11):7031-42. PubMed ID: 25242428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of process parameters for reduction of gossypol levels in cottonseed meal by Candida tropicalis ZD-3 during solid substrate fermentation.
    Zhang WJ; Xu ZR; Zhao SH; Jiang JF; Wang YB; Yan XH
    Toxicon; 2006 Aug; 48(2):221-6. PubMed ID: 16846625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The simultaneous quantification of phytosterols and tocopherols in liposomal formulations using validated atmospheric pressure chemical ionization- liquid chromatography -tandem mass spectrometry.
    Poudel A; Gachumi G; Badea I; Bashi ZD; El-Aneed A
    J Pharm Biomed Anal; 2020 May; 183():113104. PubMed ID: 32058287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.
    Nandi S; Gangopadhyay S; Ghosh S
    J Oleo Sci; 2008; 57(11):599-603. PubMed ID: 18838832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.