BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24297532)

  • 21. A network diffusion approach to inferring sample-specific function reveals functional changes associated with breast cancer.
    Patkar S; Magen A; Sharan R; Hannenhalli S
    PLoS Comput Biol; 2017 Nov; 13(11):e1005793. PubMed ID: 29190299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HER2+ Cancer Cell Dependence on PI3K vs. MAPK Signaling Axes Is Determined by Expression of EGFR, ERBB3 and CDKN1B.
    Kirouac DC; Du J; Lahdenranta J; Onsum MD; Nielsen UB; Schoeberl B; McDonagh CF
    PLoS Comput Biol; 2016 Apr; 12(4):e1004827. PubMed ID: 27035903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the protein-protein and genetic interactions of cancer to guide precision medicine.
    Bouhaddou M; Eckhardt M; Chi Naing ZZ; Kim M; Ideker T; Krogan NJ
    Curr Opin Genet Dev; 2019 Feb; 54():110-117. PubMed ID: 31288129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational approaches for the identification of cancer genes and pathways.
    Dimitrakopoulos CM; Beerenwinkel N
    Wiley Interdiscip Rev Syst Biol Med; 2017 Jan; 9(1):. PubMed ID: 27863091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks.
    Teschendorff AE; Banerji CR; Severini S; Kuehn R; Sollich P
    Sci Rep; 2015 Apr; 5():9646. PubMed ID: 25919796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional characterization of somatic mutations in cancer using network-based inference of protein activity.
    Alvarez MJ; Shen Y; Giorgi FM; Lachmann A; Ding BB; Ye BH; Califano A
    Nat Genet; 2016 Aug; 48(8):838-47. PubMed ID: 27322546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connecting signaling and metabolic pathways in EGF receptor-mediated oncogenesis of glioblastoma.
    Bag AK; Mandloi S; Jarmalavicius S; Mondal S; Kumar K; Mandal C; Walden P; Chakrabarti S; Mandal C
    PLoS Comput Biol; 2019 Aug; 15(8):e1007090. PubMed ID: 31386654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative analysis of somatic mutations and transcriptomic data to functionally stratify breast cancer patients.
    Zhang J; Abrams Z; Parvin JD; Huang K
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):513. PubMed ID: 27556157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pan-cancer analysis of TCGA data reveals notable signaling pathways.
    Neapolitan R; Horvath CM; Jiang X
    BMC Cancer; 2015 Jul; 15():516. PubMed ID: 26169172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers.
    Hwang TH; Atluri G; Kuang R; Kumar V; Starr T; Silverstein KA; Haverty PM; Zhang Z; Liu J
    BMC Genomics; 2013 Jul; 14():440. PubMed ID: 23822816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A homologous mapping method for three-dimensional reconstruction of protein networks reveals disease-associated mutations.
    Huang SH; Lo YS; Luo YC; Tseng YY; Yang JM
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):13. PubMed ID: 29560828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network-Based Method for Inferring Cancer Progression at the Pathway Level from Cross-Sectional Mutation Data.
    Wu H; Gao L; Kasabov NK
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1036-1044. PubMed ID: 26915128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data.
    Razzaq M; Paulevé L; Siegel A; Saez-Rodriguez J; Bourdon J; Guziolowski C
    PLoS Comput Biol; 2018 Oct; 14(10):e1006538. PubMed ID: 30372442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring Intracellular Signal Transduction Circuitry from Molecular Perturbation Experiments.
    Wynn ML; Egbert M; Consul N; Chang J; Wu ZF; Meravjer SD; Schnell S
    Bull Math Biol; 2018 May; 80(5):1310-1344. PubMed ID: 28455685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway Maps of Orphan and Complex Diseases Using an Integrative Computational Approach.
    Ghedira K; Kouidhi S; Hamdi Y; Othman H; Kechaou S; Znaidi S; Haïtham S; Rabhi I
    Biomed Res Int; 2020; 2020():4280467. PubMed ID: 33376724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying cancer biomarkers by network-constrained support vector machines.
    Chen L; Xuan J; Riggins RB; Clarke R; Wang Y
    BMC Syst Biol; 2011 Oct; 5():161. PubMed ID: 21992556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.