BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24297546)

  • 1. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene.
    Darabos C; Harmon SH; Moore JH
    Pac Symp Biocomput; 2014; ():188-99. PubMed ID: 24297546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide epistasis and pleiotropy characterized by the bipartite human phenotype network.
    Darabos C; Moore JH
    Methods Mol Biol; 2015; 1253():269-83. PubMed ID: 25403537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.
    Hu T; Darabos C; Cricco ME; Kong E; Moore JH
    Pac Symp Biocomput; 2015; 20():207-18. PubMed ID: 25592582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy.
    Tyler AL; Asselbergs FW; Williams SM; Moore JH
    Bioessays; 2009 Feb; 31(2):220-7. PubMed ID: 19204994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAPE: an R package for combined analysis of pleiotropy and epistasis.
    Tyler AL; Lu W; Hendrick JJ; Philip VM; Carter GW
    PLoS Comput Biol; 2013 Oct; 9(10):e1003270. PubMed ID: 24204223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models.
    Hu T; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2013; ():397-408. PubMed ID: 23424144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Combined Analysis of Pleiotropy and Epistasis (CAPE).
    Tyler AL; Emerson J; El Kassaby B; Wells AE; Philip VM; Carter GW
    Methods Mol Biol; 2021; 2212():55-67. PubMed ID: 33733350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent downstream candidate mechanisms of independent intergenic polymorphisms between co-classified diseases implicate epistasis among noncoding elements.
    Han J; Li J; Achour I; Pesce L; Foster I; Li H; Lussier YA
    Pac Symp Biocomput; 2018; 23():524-535. PubMed ID: 29218911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using C-JAMP to Investigate Epistasis and Pleiotropy.
    Konigorski S; Glicksberg BS
    Methods Mol Biol; 2021; 2212():225-243. PubMed ID: 33733359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection.
    He T; Hill CB; Angessa TT; Zhang XQ; Chen K; Moody D; Telfer P; Westcott S; Li C
    J Exp Bot; 2019 Oct; 70(20):5603-5616. PubMed ID: 31504706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring gene function and network organization in Drosophila signaling by combined analysis of pleiotropy and epistasis.
    Carter GW
    G3 (Bethesda); 2013 May; 3(5):807-14. PubMed ID: 23550134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing genetic interactions in human disease association studies using statistical epistasis networks.
    Hu T; Sinnott-Armstrong NA; Kiralis JW; Andrew AS; Karagas MR; Moore JH
    BMC Bioinformatics; 2011 Sep; 12():364. PubMed ID: 21910885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map.
    Pavlicev M; Norgard EA; Fawcett GL; Cheverud JM
    J Exp Zool B Mol Dev Evol; 2011 Jul; 316(5):371-85. PubMed ID: 21462316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistatic Networks Jointly Influence Phenotypes Related to Metabolic Disease and Gene Expression in Diversity Outbred Mice.
    Tyler AL; Ji B; Gatti DM; Munger SC; Churchill GA; Svenson KL; Carter GW
    Genetics; 2017 Jun; 206(2):621-639. PubMed ID: 28592500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system-level pathway-phenotype association analysis using synthetic feature random forest.
    Pan Q; Hu T; Malley JD; Andrew AS; Karagas MR; Moore JH
    Genet Epidemiol; 2014 Apr; 38(3):209-19. PubMed ID: 24535726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop genome-wide association study: a harvest of biological relevance.
    Liu HJ; Yan J
    Plant J; 2019 Jan; 97(1):8-18. PubMed ID: 30368955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.