BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24297869)

  • 1. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites.
    Haque JA; McDonald MG; Kulman JD; Rettie AE
    Blood; 2014 Jan; 123(4):582-9. PubMed ID: 24297869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warfarin and vitamin K compete for binding to Phe55 in human VKOR.
    Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J
    Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a sandwich enzyme-linked immunosorbent assay (ELISA) to quantify γ-glutamyl-carboxylated clotting factor IX and assess redox susceptibility of anticoagulant chemicals.
    Sato R; Watanabe K; Kamata R; Takeda K
    J Vet Med Sci; 2022 Jun; 84(6):804-808. PubMed ID: 35444089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination index of the concentration and in vivo antagonism activity of racemic warfarin and its metabolites to assess individual drug responses.
    Kobayashi S; Ishii K; Yamada Y; Ryu E; Hashizume J; Nose S; Hara T; Nakashima M; Ohyama K
    J Thromb Thrombolysis; 2019 Apr; 47(3):467-472. PubMed ID: 30465164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The characterization of potent novel warfarin analogs.
    Kerr JS; Li HY; Wexler RS; Robinson AJ; Robinson CS; Boswell GA; Krauthauser C; Harlow PP
    Thromb Res; 1997 Oct; 88(2):127-36. PubMed ID: 9361366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional study of the vitamin K cycle in mammalian cells.
    Tie JK; Jin DY; Straight DL; Stafford DW
    Blood; 2011 Mar; 117(10):2967-74. PubMed ID: 21239697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites.
    Czogalla KJ; Liphardt K; Höning K; Hornung V; Biswas A; Watzka M; Oldenburg J
    Blood Adv; 2018 Mar; 2(6):691-702. PubMed ID: 29581108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and cellular basis of vitamin K antagonism.
    Liu S; Shen G; Li W
    J Thromb Haemost; 2022 Sep; 20(9):1971-1983. PubMed ID: 35748323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase.
    Rishavy MA; Hallgren KW; Wilson L; Singh S; Runge KW; Berkner KL
    Blood; 2018 Jun; 131(25):2826-2835. PubMed ID: 29592891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Study of the Vitamin K Cycle Enzymes in Live Cells.
    Tie JK; Stafford DW
    Methods Enzymol; 2017; 584():349-394. PubMed ID: 28065270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition.
    Shen G; Li S; Cui W; Liu S; Liu Q; Yang Y; Gross M; Li W
    J Thromb Haemost; 2018 Jun; 16(6):1164-1175. PubMed ID: 29665197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cell-based high-throughput screen identifies drugs that cause bleeding disorders by off-targeting the vitamin K cycle.
    Chen X; Li C; Jin DY; Ingram B; Hao Z; Bai X; Stafford DW; Hu K; Tie JK
    Blood; 2020 Aug; 136(7):898-908. PubMed ID: 32374827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions.
    Sinhadri BCS; Jin DY; Stafford DW; Tie JK
    Sci Rep; 2017 Dec; 7(1):17632. PubMed ID: 29247216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and structure-activity relationships of novel warfarin derivatives.
    Gebauer M
    Bioorg Med Chem; 2007 Mar; 15(6):2414-20. PubMed ID: 17275317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.