These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24297896)

  • 41. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless.
    Peschel N; Chen KF; Szabo G; Stanewsky R
    Curr Biol; 2009 Feb; 19(3):241-7. PubMed ID: 19185492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light entrainment of retinal biorhythms: cryptochrome 2 as candidate photoreceptor in mammals.
    Vanderstraeten J; Gailly P; Malkemper EP
    Cell Mol Life Sci; 2020 Mar; 77(5):875-884. PubMed ID: 31982933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.
    Alex A; Li A; Zeng X; Tate RE; McKee ML; Capen DE; Zhang Z; Tanzi RE; Zhou C
    PLoS One; 2015; 10(9):e0137236. PubMed ID: 26348211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.
    Egan ES; Franklin TM; Hilderbrand-Chae MJ; McNeil GP; Roberts MA; Schroeder AJ; Zhang X; Jackson FR
    J Neurosci; 1999 May; 19(10):3665-73. PubMed ID: 10233998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The cofactor-dependent folding mechanism of Drosophila cryptochrome revealed by single-molecule pulling experiments.
    Foroutannejad S; Good LL; Lin C; Carter ZI; Tadesse MG; Lucius AL; Crane BR; Maillard RA
    Nat Commun; 2023 Feb; 14(1):1057. PubMed ID: 36828841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photic signaling by cryptochrome in the Drosophila circadian system.
    Lin FJ; Song W; Meyer-Bernstein E; Naidoo N; Sehgal A
    Mol Cell Biol; 2001 Nov; 21(21):7287-94. PubMed ID: 11585911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
    Kao YT; Tan C; Song SH; Oztürk N; Li J; Wang L; Sancar A; Zhong D
    J Am Chem Soc; 2008 Jun; 130(24):7695-701. PubMed ID: 18500802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural Explanations of Flavin Adenine Dinucleotide Binding in
    Sjulstok E; Solov'yov IA
    J Phys Chem Lett; 2020 May; 11(10):3866-3870. PubMed ID: 32330039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster.
    Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CLOCK stabilizes CYCLE to initiate clock function in
    Liu T; Mahesh G; Yu W; Hardin PE
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10972-10977. PubMed ID: 28973907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock.
    Peschel N; Veleri S; Stanewsky R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway.
    Fedele G; Green EW; Rosato E; Kyriacou CP
    Nat Commun; 2014 Jul; 5():4391. PubMed ID: 25019586
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa.
    Froehlich AC; Chen CH; Belden WJ; Madeti C; Roenneberg T; Merrow M; Loros JJ; Dunlap JC
    Eukaryot Cell; 2010 May; 9(5):738-50. PubMed ID: 20305004
    [TBL] [Abstract][Full Text] [Related]  

  • 56. No FAD, No CRY: Redox and Circadian Rhythms.
    Pritchett D; Reddy AB
    Trends Biochem Sci; 2017 Jul; 42(7):497-499. PubMed ID: 28592378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.
    Vinayak P; Coupar J; Hughes SE; Fozdar P; Kilby J; Garren E; Yoshii T; Hirsh J
    PLoS Genet; 2013; 9(7):e1003615. PubMed ID: 23874218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
    Xing W; Busino L; Hinds TR; Marionni ST; Saifee NH; Bush MF; Pagano M; Zheng N
    Nature; 2013 Apr; 496(7443):64-8. PubMed ID: 23503662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of cryptochromes and photolyases for insect life under sunlight.
    Deppisch P; Kirsch V; Helfrich-Förster C; Senthilan PR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):373-389. PubMed ID: 36609567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.