These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 24297900)
1. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Vonk FJ; Casewell NR; Henkel CV; Heimberg AM; Jansen HJ; McCleary RJ; Kerkkamp HM; Vos RA; Guerreiro I; Calvete JJ; Wüster W; Woods AE; Logan JM; Harrison RA; Castoe TA; de Koning AP; Pollock DD; Yandell M; Calderon D; Renjifo C; Currier RB; Salgado D; Pla D; Sanz L; Hyder AS; Ribeiro JM; Arntzen JW; van den Thillart GE; Boetzer M; Pirovano W; Dirks RP; Spaink HP; Duboule D; McGlinn E; Kini RM; Richardson MK Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20651-6. PubMed ID: 24297900 [TBL] [Abstract][Full Text] [Related]
2. Distinct regulatory networks control toxin gene expression in elapid and viperid snakes. Modahl CM; Han SX; van Thiel J; Vaz C; Dunstan NL; Frietze S; Jackson TNW; Mackessy SP; Kini RM BMC Genomics; 2024 Feb; 25(1):186. PubMed ID: 38365592 [TBL] [Abstract][Full Text] [Related]
3. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). Tan CH; Tan KY; Fung SY; Tan NH BMC Genomics; 2015 Sep; 16(1):687. PubMed ID: 26358635 [TBL] [Abstract][Full Text] [Related]
5. The Target Selects the Toxin: Specific Amino Acids in Snake-Prey Nicotinic Acetylcholine Receptors That Are Selectively Bound by King Cobra Venoms. Chandrasekara U; Harris RJ; Fry BG Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006190 [TBL] [Abstract][Full Text] [Related]
6. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms. Margres MJ; Aronow K; Loyacano J; Rokyta DR BMC Genomics; 2013 Aug; 14():531. PubMed ID: 23915248 [TBL] [Abstract][Full Text] [Related]
7. Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. Chang HC; Tsai TS; Tsai IH J Proteomics; 2013 Aug; 89():141-53. PubMed ID: 23796489 [TBL] [Abstract][Full Text] [Related]
8. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Liu CC; Lin CC; Hsiao YC; Wang PJ; Yu JS J Proteomics; 2018 Sep; 187():59-68. PubMed ID: 29929037 [TBL] [Abstract][Full Text] [Related]
9. Venom down under: dynamic evolution of Australian elapid snake toxins. Jackson TN; Sunagar K; Undheim EA; Koludarov I; Chan AH; Sanders K; Ali SA; Hendrikx I; Dunstan N; Fry BG Toxins (Basel); 2013 Dec; 5(12):2621-55. PubMed ID: 24351719 [TBL] [Abstract][Full Text] [Related]
10. Clinical implications of convergent procoagulant toxicity and differential antivenom efficacy in Australian elapid snake venoms. Zdenek CN; den Brouw BO; Dashevsky D; Gloria A; Youngman NJ; Watson E; Green P; Hay C; Dunstan N; Allen L; Fry BG Toxicol Lett; 2019 Nov; 316():171-182. PubMed ID: 31442586 [TBL] [Abstract][Full Text] [Related]
11. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. Pahari S; Bickford D; Fry BG; Kini RM BMC Evol Biol; 2007 Sep; 7():175. PubMed ID: 17900344 [TBL] [Abstract][Full Text] [Related]
13. Development of a polymerase chain reaction to distinguish monocellate cobra (Naja khouthia) bites from other common Thai snake species, using both venom extracts and bite-site swabs. Suntrarachun S; Pakmanee N; Tirawatnapong T; Chanhome L; Sitprija V Toxicon; 2001 Jul; 39(7):1087-90. PubMed ID: 11223099 [TBL] [Abstract][Full Text] [Related]
14. The Snake with the Scorpion's Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus). Yang DC; Deuis JR; Dashevsky D; Dobson J; Jackson TN; Brust A; Xie B; Koludarov I; Debono J; Hendrikx I; Hodgson WC; Josh P; Nouwens A; Baillie GJ; Bruxner TJ; Alewood PF; Lim KK; Frank N; Vetter I; Fry BG Toxins (Basel); 2016 Oct; 8(10):. PubMed ID: 27763551 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. Pla D; Petras D; Saviola AJ; Modahl CM; Sanz L; Pérez A; Juárez E; Frietze S; Dorrestein PC; Mackessy SP; Calvete JJ J Proteomics; 2018 Mar; 174():71-84. PubMed ID: 29292096 [TBL] [Abstract][Full Text] [Related]
16. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. Aird SD; Aggarwal S; Villar-Briones A; Tin MM; Terada K; Mikheyev AS BMC Genomics; 2015 Aug; 16():647. PubMed ID: 26315097 [TBL] [Abstract][Full Text] [Related]
17. Deep venomics of the Pseudonaja genus reveals inter- and intra-specific variation. Reeks T; Lavergne V; Sunagar K; Jones A; Undheim E; Dunstan N; Fry B; Alewood PF J Proteomics; 2016 Feb; 133():20-32. PubMed ID: 26632978 [TBL] [Abstract][Full Text] [Related]