These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 24298015)
1. The role of NOD2 in murine and human melioidosis. Myers ND; Chantratita N; Berrington WR; Chierakul W; Limmathurotsakul D; Wuthiekanun V; Robertson JD; Liggitt HD; Peacock SJ; Skerrett SJ; West TE J Immunol; 2014 Jan; 192(1):300-7. PubMed ID: 24298015 [TBL] [Abstract][Full Text] [Related]
2. Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells. Dando SJ; Ipe DS; Batzloff M; Sullivan MJ; Crossman DK; Crowley M; Strong E; Kyan S; Leclercq SY; Ekberg JAK; St John J; Beacham IR; Ulett GC Infect Immun; 2016 Jul; 84(7):1941-1956. PubMed ID: 27091931 [TBL] [Abstract][Full Text] [Related]
3. Activation of Toll-like receptors by Burkholderia pseudomallei. West TE; Ernst RK; Jansson-Hutson MJ; Skerrett SJ BMC Immunol; 2008 Aug; 9():46. PubMed ID: 18691413 [TBL] [Abstract][Full Text] [Related]
4. MyD88 dependent signaling contributes to protective host defense against Burkholderia pseudomallei. Wiersinga WJ; Wieland CW; Roelofs JJ; van der Poll T PLoS One; 2008; 3(10):e3494. PubMed ID: 18946505 [TBL] [Abstract][Full Text] [Related]
5. Survey of innate immune responses to Burkholderia pseudomallei in human blood identifies a central role for lipopolysaccharide. Chantratita N; Tandhavanant S; Myers ND; Seal S; Arayawichanont A; Kliangsa-Ad A; Hittle LE; Ernst RK; Emond MJ; Wurfel MM; Day NP; Peacock SJ; West TE PLoS One; 2013; 8(11):e81617. PubMed ID: 24303060 [TBL] [Abstract][Full Text] [Related]
6. Impaired TLR5 functionality is associated with survival in melioidosis. West TE; Chantratita N; Chierakul W; Limmathurotsakul D; Wuthiekanun V; Myers ND; Emond MJ; Wurfel MM; Hawn TR; Peacock SJ; Skerrett SJ J Immunol; 2013 Apr; 190(7):3373-9. PubMed ID: 23447684 [TBL] [Abstract][Full Text] [Related]
7. Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity. Chin CY; Monack DM; Nathan S BMC Genomics; 2010 Nov; 11():672. PubMed ID: 21110886 [TBL] [Abstract][Full Text] [Related]
8. Cytokine gene expression in innately susceptible BALB/c mice and relatively resistant C57BL/6 mice during infection with virulent Burkholderia pseudomallei. Ulett GC; Ketheesan N; Hirst RG Infect Immun; 2000 Apr; 68(4):2034-42. PubMed ID: 10722599 [TBL] [Abstract][Full Text] [Related]
9. Nucleotide-binding oligomerization domain-containing protein 2 regulates suppressor of cytokine signaling 3 expression in Burkholderia pseudomallei-infected mouse macrophage cell line RAW 264.7. Pudla M; Kananurak A; Limposuwan K; Sirisinha S; Utaisincharoen P Innate Immun; 2011 Dec; 17(6):532-40. PubMed ID: 21088051 [TBL] [Abstract][Full Text] [Related]
10. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). Wiersinga WJ; Wieland CW; Dessing MC; Chantratita N; Cheng AC; Limmathurotsakul D; Chierakul W; Leendertse M; Florquin S; de Vos AF; White N; Dondorp AM; Day NP; Peacock SJ; van der Poll T PLoS Med; 2007 Jul; 4(7):e248. PubMed ID: 17676990 [TBL] [Abstract][Full Text] [Related]
11. Flagellin-independent effects of a Toll-like receptor 5 polymorphism in the inflammatory response to Burkholderia pseudomallei. Dickey AK; Chantratita N; Tandhavanant S; Ducken D; Lovelace-Macon L; Seal S; Robertson J; Myers ND; Schwarz S; Wurfel MM; Kosamo S; West TE PLoS Negl Trop Dis; 2019 May; 13(5):e0007354. PubMed ID: 31067234 [TBL] [Abstract][Full Text] [Related]
12. Impaired early cytokine responses at the site of infection in a murine model of type 2 diabetes and melioidosis comorbidity. Hodgson KA; Govan BL; Walduck AK; Ketheesan N; Morris JL Infect Immun; 2013 Feb; 81(2):470-7. PubMed ID: 23208607 [TBL] [Abstract][Full Text] [Related]
13. Susceptibility to Burkholderia pseudomallei is associated with host immune responses involving tumor necrosis factor receptor-1 (TNFR1) and TNF receptor-2 (TNFR2). Barnes JL; Williams NL; Ketheesan N FEMS Immunol Med Microbiol; 2008 Apr; 52(3):379-88. PubMed ID: 18294191 [TBL] [Abstract][Full Text] [Related]
14. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice. Lafontaine ER; Zimmerman SM; Shaffer TL; Michel F; Gao X; Hogan RJ PLoS One; 2013; 8(10):e76804. PubMed ID: 24098563 [TBL] [Abstract][Full Text] [Related]
15. Dysregulation of TNF-α and IFN-γ expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. Amemiya K; Dankmeyer JL; Bearss JJ; Zeng X; Stonier SW; Soffler C; Cote CK; Welkos SL; Fetterer DP; Chance TB; Trevino SR; Worsham PL; Waag DM BMC Immunol; 2020 Feb; 21(1):5. PubMed ID: 32013893 [TBL] [Abstract][Full Text] [Related]
16. Murine pulmonary infection and inflammation induced by inhalation of Burkholderia pseudomallei. West TE; Myers ND; Liggitt HD; Skerrett SJ Int J Exp Pathol; 2012 Dec; 93(6):421-8. PubMed ID: 23136994 [TBL] [Abstract][Full Text] [Related]
17. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. Bearss JJ; Hunter M; Dankmeyer JL; Fritts KA; Klimko CP; Weaver CH; Shoe JL; Quirk AV; Toothman RG; Webster WM; Fetterer DP; Bozue JA; Worsham PL; Welkos SL; Amemiya K; Cote CK PLoS One; 2017; 12(2):e0172627. PubMed ID: 28235018 [TBL] [Abstract][Full Text] [Related]
18. Endogenous interleukin-18 improves the early antimicrobial host response in severe melioidosis. Wiersinga WJ; Wieland CW; van der Windt GJ; de Boer A; Florquin S; Dondorp A; Day NP; Peacock SJ; van der Poll T Infect Immun; 2007 Aug; 75(8):3739-46. PubMed ID: 17517876 [TBL] [Abstract][Full Text] [Related]
19. Screen of whole blood responses to flagellin identifies TLR5 variation associated with outcome in melioidosis. Chantratita N; Tandhavanant S; Myers ND; Chierakul W; Robertson JD; Mahavanakul W; Singhasivanon P; Emond MJ; Peacock SJ; West TE Genes Immun; 2014 Mar; 15(2):63-71. PubMed ID: 24285178 [TBL] [Abstract][Full Text] [Related]
20. Urokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis. Wiersinga WJ; Kager LM; Hovius JW; van der Windt GJ; de Vos AF; Meijers JC; Roelofs JJ; Dondorp A; Levi M; Day NP; Peacock SJ; van der Poll T J Immunol; 2010 Mar; 184(6):3079-86. PubMed ID: 20142364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]