BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 24298059)

  • 1. Repurposing CRISPR/Cas9 for in situ functional assays.
    Malina A; Mills JR; Cencic R; Yan Y; Fraser J; Schippers LM; Paquet M; Dostie J; Pelletier J
    Genes Dev; 2013 Dec; 27(23):2602-14. PubMed ID: 24298059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice.
    Sakurai T; Watanabe S; Kamiyoshi A; Sato M; Shindo T
    BMC Biotechnol; 2014 Jul; 14():69. PubMed ID: 25042988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
    Yuen KS; Chan CP; Wong NM; Ho CH; Ho TH; Lei T; Deng W; Tsao SW; Chen H; Kok KH; Jin DY
    J Gen Virol; 2015 Mar; 96(Pt 3):626-636. PubMed ID: 25502645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system.
    Gratacap RL; Regan T; Dehler CE; Martin SAM; Boudinot P; Collet B; Houston RD
    BMC Biotechnol; 2020 Jun; 20(1):35. PubMed ID: 32576161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved genome editing in human cell lines using the CRISPR method.
    Munoz IM; Szyniarowski P; Toth R; Rouse J; Lachaud C
    PLoS One; 2014; 9(10):e109752. PubMed ID: 25303670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.
    Zhou Y; Zhu S; Cai C; Yuan P; Li C; Huang Y; Wei W
    Nature; 2014 May; 509(7501):487-91. PubMed ID: 24717434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting CRISPR/Cas9 for functional genomics screens.
    Malina A; Katigbak A; Cencic R; Maïga RI; Robert F; Miura H; Pelletier J
    Methods Enzymol; 2014; 546():193-213. PubMed ID: 25398342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
    Koike-Yusa H; Li Y; Tan EP; Velasco-Herrera Mdel C; Yusa K
    Nat Biotechnol; 2014 Mar; 32(3):267-73. PubMed ID: 24535568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic screens and functional genomics using CRISPR/Cas9 technology.
    Hartenian E; Doench JG
    FEBS J; 2015 Apr; 282(8):1383-93. PubMed ID: 25728500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.
    Chakraborty C; Teoh SL; Das S
    Curr Drug Targets; 2017; 18(14):1653-1663. PubMed ID: 27231109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of genome editing in studying hearing loss.
    Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X
    Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells.
    Bellec J; Bacchetta M; Losa D; Anegon I; Chanson M; Nguyen TH
    Curr Gene Ther; 2015; 15(5):447-59. PubMed ID: 26264708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods.
    Jo YI; Suresh B; Kim H; Ramakrishna S
    Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.