These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24298070)

  • 1. Can immunity to breast cancer eliminate residual micrometastases?
    Disis ML; Stanton SE
    Clin Cancer Res; 2013 Dec; 19(23):6398-403. PubMed ID: 24298070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel immunologic and biologic therapies for breast cancer.
    Gutheil JC
    Curr Oncol Rep; 2000 Nov; 2(6):582-6. PubMed ID: 11122896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of innate and adaptive immunity in the efficacy of anti-HER2 monoclonal antibodies for HER2-positive breast cancer.
    Musolino A; Boggiani D; Pellegrino B; Zanoni D; Sikokis A; Missale G; Silini EM; Maglietta G; Frassoldati A; Michiara M
    Crit Rev Oncol Hematol; 2020 May; 149():102927. PubMed ID: 32172224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CD40 Agonist and PD-1 Antagonist Antibody Reprogram the Microenvironment of Nonimmunogenic Tumors to Allow T-cell-Mediated Anticancer Activity.
    Ma HS; Poudel B; Torres ER; Sidhom JW; Robinson TM; Christmas B; Scott B; Cruz K; Woolman S; Wall VZ; Armstrong T; Jaffee EM
    Cancer Immunol Res; 2019 Mar; 7(3):428-442. PubMed ID: 30642833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a therapeutic breast cancer vaccine: the next steps.
    Emens LA
    Expert Rev Vaccines; 2005 Dec; 4(6):831-41. PubMed ID: 16372879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonblocking Monoclonal Antibody Targeting Soluble MIC Revamps Endogenous Innate and Adaptive Antitumor Responses and Eliminates Primary and Metastatic Tumors.
    Lu S; Zhang J; Liu D; Li G; Staveley-O'Carroll KF; Li Z; Wu JD
    Clin Cancer Res; 2015 Nov; 21(21):4819-30. PubMed ID: 26106076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing Immunotherapy in Metastatic Breast Cancer.
    Mansour M; Teo ZL; Luen SJ; Loi S
    Curr Treat Options Oncol; 2017 Jun; 18(6):35. PubMed ID: 28534250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a breast cancer vaccine: work in progress.
    Emens LA; Jaffee EM
    Oncology (Williston Park); 2003 Sep; 17(9):1200-11; discussion 1214, 1217-8. PubMed ID: 14569849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular adaptive immune system plays a crucial role in trastuzumab clinical efficacy.
    Bellati F; Napoletano C; Ruscito I; Liberati M; Panici PB; Nuti M
    J Clin Oncol; 2010 Jul; 28(21):e369-70; author reply e371. PubMed ID: 20479394
    [No Abstract]   [Full Text] [Related]  

  • 10. Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice.
    Wang B; Zaidi N; He LZ; Zhang L; Kuroiwa JM; Keler T; Steinman RM
    Breast Cancer Res; 2012 Mar; 14(2):R39. PubMed ID: 22397502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injecting Hope--A Review of Breast Cancer Vaccines.
    Mittendorf EA; Peoples GE
    Oncology (Williston Park); 2016 May; 30(5):475-81, 485. PubMed ID: 27188680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy in Breast Cancer- Paving New Roads?
    Truica CI; Cleary AS
    Curr Mol Pharmacol; 2016; 9(3):208-216. PubMed ID: 26177646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunotherapy for the treatment of breast cancer.
    Ernst B; Anderson KS
    Curr Oncol Rep; 2015 Feb; 17(2):5. PubMed ID: 25677118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy for the treatment of breast cancer: checkpoint blockade, cancer vaccines, and future directions in combination immunotherapy.
    McArthur HL; Page DB
    Clin Adv Hematol Oncol; 2016 Nov; 14(11):922-933. PubMed ID: 27930644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of membrane anchored cytokines and B7-1 alters tumor microenvironment and induces protective antitumor immunity in a murine breast cancer model.
    Bozeman EN; Cimino-Mathews A; Machiah DK; Patel JM; Krishnamoorthy A; Tien L; Shashidharamurthy R; Selvaraj P
    Vaccine; 2013 May; 31(20):2449-56. PubMed ID: 23541884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing an effective breast cancer vaccine: challenges to achieving sterile immunity versus resetting equilibrium.
    Curigliano G; Criscitiello C; Esposito A; Fumagalli L; Gelao L; Locatelli M; Minchella I; Goldhirsch A
    Breast; 2013 Aug; 22 Suppl 2():S96-9. PubMed ID: 24074802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tumor Microenvironment of Primitive and Metastatic Breast Cancer: Implications for Novel Therapeutic Strategies.
    Zarrilli G; Businello G; Dieci MV; Paccagnella S; Carraro V; Cappellesso R; Miglietta F; Griguolo G; Guarneri V; Lo Mele M; Fassan M
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33143050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HER2-Positive Breast Cancer Immunotherapy: A Focus on Vaccine Development.
    Arab A; Yazdian-Robati R; Behravan J
    Arch Immunol Ther Exp (Warsz); 2020 Jan; 68(1):2. PubMed ID: 31915932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing the immune system for the treatment of breast cancer.
    Jiang X
    J Zhejiang Univ Sci B; 2014 Jan; 15(1):1-15. PubMed ID: 24390741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.