BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24298135)

  • 1. Spike-timing-dependent BDNF secretion and synaptic plasticity.
    Lu H; Park H; Poo MM
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130132. PubMed ID: 24298135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term population spike-timing-dependent plasticity promotes synaptic tagging but not cross-tagging in rat hippocampal area CA1.
    Pang KKL; Sharma M; Krishna-K K; Behnisch T; Sajikumar S
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5737-5746. PubMed ID: 30819889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons.
    Singh B; Henneberger C; Betances D; Arevalo MA; Rodríguez-Tébar A; Meier JC; Grantyn R
    J Neurosci; 2006 Jul; 26(27):7189-200. PubMed ID: 16822976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP.
    Solinas SMG; Edelmann E; Leßmann V; Migliore M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006975. PubMed ID: 31017891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine D1 and D5 receptors modulate spike timing-dependent plasticity at medial perforant path to dentate granule cell synapses.
    Yang K; Dani JA
    J Neurosci; 2014 Nov; 34(48):15888-97. PubMed ID: 25429131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA.
    Sivakumaran S; Mohajerani MH; Cherubini E
    J Neurosci; 2009 Feb; 29(8):2637-47. PubMed ID: 19244539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite.
    Matsuda N; Lu H; Fukata Y; Noritake J; Gao H; Mukherjee S; Nemoto T; Fukata M; Poo MM
    J Neurosci; 2009 Nov; 29(45):14185-98. PubMed ID: 19906967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity.
    Kuczewski N; Porcher C; Ferrand N; Fiorentino H; Pellegrino C; Kolarow R; Lessmann V; Medina I; Gaiarsa JL
    J Neurosci; 2008 Jul; 28(27):7013-23. PubMed ID: 18596175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal asymmetry in spike timing-dependent synaptic plasticity.
    Bi GQ; Wang HX
    Physiol Behav; 2002 Dec; 77(4-5):551-5. PubMed ID: 12526998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons.
    Campanac E; Debanne D
    J Physiol; 2008 Feb; 586(3):779-93. PubMed ID: 18048448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.
    Ninan I; Bath KG; Dagar K; Perez-Castro R; Plummer MR; Lee FS; Chao MV
    J Neurosci; 2010 Jun; 30(26):8866-70. PubMed ID: 20592208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
    Bi GQ; Poo MM
    J Neurosci; 1998 Dec; 18(24):10464-72. PubMed ID: 9852584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex.
    D'amour JA; Froemke RC
    Neuron; 2015 Apr; 86(2):514-28. PubMed ID: 25843405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing-dependent plasticity rewards synchrony rather than causality.
    Anisimova M; van Bommel B; Wang R; Mikhaylova M; Wiegert JS; Oertner TG; Gee CE
    Cereb Cortex; 2022 Dec; 33(1):23-34. PubMed ID: 35203089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines.
    Tanaka J; Horiike Y; Matsuzaki M; Miyazaki T; Ellis-Davies GC; Kasai H
    Science; 2008 Mar; 319(5870):1683-7. PubMed ID: 18309046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hebbian and non-Hebbian timing-dependent plasticity in the hippocampal CA3 region.
    Jackson MB
    Hippocampus; 2020 Dec; 30(12):1241-1256. PubMed ID: 32818312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rab3A is required for brain-derived neurotrophic factor-induced synaptic plasticity: transcriptional analysis at the population and single-cell levels.
    Thakker-Varia S; Alder J; Crozier RA; Plummer MR; Black IB
    J Neurosci; 2001 Sep; 21(17):6782-90. PubMed ID: 11517266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.