BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24298157)

  • 1. Incorporation of inwardly rectifying AMPA receptors at silent synapses during hippocampal long-term potentiation.
    Morita D; Rah JC; Isaac JT
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130156. PubMed ID: 24298157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sindbis viral-mediated expression of Ca2+-permeable AMPA receptors at hippocampal CA1 synapses and induction of NMDA receptor-independent long-term potentiation.
    Okada T; Yamada N; Kakegawa W; Tsuzuki K; Kawamura M; Nawa H; Iino M; Ozawa S
    Eur J Neurosci; 2001 Apr; 13(8):1635-43. PubMed ID: 11328357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types.
    Szabo A; Somogyi J; Cauli B; Lambolez B; Somogyi P; Lamsa KP
    J Neurosci; 2012 May; 32(19):6511-6. PubMed ID: 22573673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus.
    Park P; Sanderson TM; Amici M; Choi SL; Bortolotto ZA; Zhuo M; Kaang BK; Collingridge GL
    J Neurosci; 2016 Jan; 36(2):622-31. PubMed ID: 26758849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice.
    Liao D; Hessler NA; Malinow R
    Nature; 1995 Jun; 375(6530):400-4. PubMed ID: 7760933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation in the hippocampal CA1 area and dentate gyrus plays different roles in spatial learning.
    Okada T; Yamada N; Tsuzuki K; Horikawa HP; Tanaka K; Ozawa S
    Eur J Neurosci; 2003 Jan; 17(2):341-9. PubMed ID: 12542671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postsynaptic expression of a new calcium pathway in hippocampal CA3 neurons and its influence on mossy fiber long-term potentiation.
    Kakegawa W; Yamada N; Iino M; Kameyama K; Umeda T; Tsuzuki K; Ozawa S
    J Neurosci; 2002 Jun; 22(11):4312-20. PubMed ID: 12040036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation.
    Plant K; Pelkey KA; Bortolotto ZA; Morita D; Terashima A; McBain CJ; Collingridge GL; Isaac JT
    Nat Neurosci; 2006 May; 9(5):602-4. PubMed ID: 16582904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ionotropic glutamate receptors in long-term potentiation in rat hippocampal CA1 oriens-lacunosum moleculare interneurons.
    Oren I; Nissen W; Kullmann DM; Somogyi P; Lamsa KP
    J Neurosci; 2009 Jan; 29(4):939-50. PubMed ID: 19176803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking.
    Jaafari N; Henley JM; Hanley JG
    J Neurosci; 2012 Aug; 32(34):11618-30. PubMed ID: 22915106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that caspase-1 is a negative regulator of AMPA receptor-mediated long-term potentiation at hippocampal synapses.
    Lu C; Wang Y; Furukawa K; Fu W; Ouyang X; Mattson MP
    J Neurochem; 2006 May; 97(4):1104-10. PubMed ID: 16573645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term potentiation in the hippocampal CA1 region does not require insertion and activation of GluR2-lacking AMPA receptors.
    Gray EE; Fink AE; SariƱana J; Vissel B; O'Dell TJ
    J Neurophysiol; 2007 Oct; 98(4):2488-92. PubMed ID: 17652419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation.
    Adesnik H; Nicoll RA
    J Neurosci; 2007 Apr; 27(17):4598-602. PubMed ID: 17460072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AKAP150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca2+-permeable AMPA receptors.
    Sanderson JL; Gorski JA; Gibson ES; Lam P; Freund RK; Chick WS; Dell'Acqua ML
    J Neurosci; 2012 Oct; 32(43):15036-52. PubMed ID: 23100425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient appearance of Ca
    Tominaga-Yoshino K; Urakubo T; Ueno Y; Kawaai K; Saito S; Tashiro T; Ogura A
    Hippocampus; 2020 Jul; 30(7):763-769. PubMed ID: 32320117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic inactivation of a neural circuit enhances LTP by inducing silent synapse formation.
    Arendt KL; Sarti F; Chen L
    J Neurosci; 2013 Jan; 33(5):2087-96. PubMed ID: 23365245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of AMPA receptor kinetics differentially influences synaptic plasticity in the hippocampus.
    Arai AC; Xia YF; Suzuki E
    Neuroscience; 2004; 123(4):1011-24. PubMed ID: 14751292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.