BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2429837)

  • 1. A Raman spectroscopic study on the interaction of an ion-channel protein with a phospholipid in a model membrane system (gramicidin A/L-alpha-lysophosphatidylcholine).
    Aslanian D; Négrerie M; Chambert R
    Eur J Biochem; 1986 Oct; 160(2):395-400. PubMed ID: 2429837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environments and conformations of tryptophan side chains of gramicidin A in phospholipid bilayers studied by Raman spectroscopy.
    Takeuchi H; Nemoto Y; Harada I
    Biochemistry; 1990 Feb; 29(6):1572-9. PubMed ID: 1692241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational studies on the gramicidin A transmembrane channel in lipid micelles and liposomes.
    Masotti L; Spisni A; Urry DW
    Cell Biophys; 1980 Sep; 2(3):241-51. PubMed ID: 6159096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular interactions of gramicidin A' transmembrane channels incorporated into lysophosphatidylcholine lipid systems.
    Cavatorta P; Spisni A; Casali E; Lindner L; Masotti L; Urry DW
    Biochim Biophys Acta; 1982 Jul; 689(1):113-20. PubMed ID: 6179540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-Raman investigation of phospholipid-polypeptide interactions in model membranes.
    Susi H; Sampugna J; Hampson JW; Ard JS
    Biochemistry; 1979 Jan; 18(2):297-301. PubMed ID: 84681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric spectroscopy of L-alpha-lysolecithin-packaged gramicidin A.
    Buchet R; Luan CH
    Biophys Chem; 1988 Dec; 32(2-3):199-209. PubMed ID: 2472178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan interactions of gramicidin A' channels in lipids: a time-resolved fluorescence study.
    Masotti L; Cavatorta P; Sartor G; Casali E; Szabo AG
    Biochim Biophys Acta; 1986 Nov; 862(2):265-72. PubMed ID: 2430620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of lipid/gramicidin dispersions and cocrystals by Raman scattering.
    Short KW; Wallace BA; Myers RA; Fodor SP; Dunker AK
    Biochemistry; 1987 Jan; 26(2):557-62. PubMed ID: 2435320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular organization of lysophosphatidylcholine-packaged Gramicidin A.
    Spisni A; Pasquali-Ronchetti I; Casali E; Lindner L; Cavatorta P; Masotti L; Urry DW
    Biochim Biophys Acta; 1983 Jul; 732(1):58-68. PubMed ID: 6191773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of proteins and peptides on the phase properties of lipids.
    Killian JA; de Kruijff B
    Chem Phys Lipids; 1986; 40(2-4):259-84. PubMed ID: 2427235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent history dependence of gramicidin-lipid interactions: a Raman and infrared spectroscopic study.
    Bouchard M; Auger M
    Biophys J; 1993 Dec; 65(6):2484-92. PubMed ID: 7508763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-exclusion high-performance liquid chromatography in the study of the autoassociating antibiotic gramicidin A in micellar milieu.
    Bañó MC; Salom D; Abad C
    J Biochem Biophys Methods; 2003 Jun; 56(1-3):297-309. PubMed ID: 12834985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman linear intensity difference of membrane-bound peptides: indole ring orientations of tryptophans 11 and 13 in the gramicidin A transmembrane channel.
    Maruyama T; Takeuchi H
    Biospectroscopy; 1998; 4(3):171-84. PubMed ID: 9639108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of the tryptophans of gramicidin for its lipid structure modulating activity in lysophosphatidylcholine and phosphatidylethanolamine model membranes. A comparative study employing gramicidin analogs and a synthetic alpha-helical hydrophobic polypeptide.
    Aranda FJ; Killian JA; de Kruijff B
    Biochim Biophys Acta; 1987 Jul; 901(2):217-28. PubMed ID: 2440475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gramicidin A/short-chain phospholipid dispersions: chain length dependence of gramicidin conformation and lipid organization.
    Greathouse DV; Hinton JF; Kim KS; Koeppe RE
    Biochemistry; 1994 Apr; 33(14):4291-9. PubMed ID: 7512381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of viscosity on gramicidin tryptophan rotational motion.
    Scarlata SF
    Biophys J; 1988 Dec; 54(6):1149-57. PubMed ID: 2466493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A difference infrared spectroscopic study of gramicidin A, alamethicin and bacteriorhodopsin in perdeuterated dimyristoylphosphatidylcholine.
    Lee DC; Durrani AA; Chapman D
    Biochim Biophys Acta; 1984 Jan; 769(1):49-56. PubMed ID: 6197998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation of gramicidin in relation to its ability to form bilayers with lysophosphatidylcholine.
    Killian JA; Urry DW
    Biochemistry; 1988 Sep; 27(19):7295-301. PubMed ID: 2462902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative infrared determination of acyl chain conformation in gramicidin/dipalmitoylphosphatidylcholine mixtures.
    Davies MA; Brauner JW; Schuster HF; Mendelsohn R
    Biochem Biophys Res Commun; 1990 Apr; 168(1):85-90. PubMed ID: 1691641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.