These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24298449)

  • 1. Metal-dependent gene regulation in the causative agent of Lyme disease.
    Troxell B; Yang XF
    Front Cell Infect Microbiol; 2013; 3():79. PubMed ID: 24298449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BosR Is A Novel Fur Family Member Responsive to Copper and Regulating Copper Homeostasis in Borrelia burgdorferi.
    Wang P; Yu Z; Santangelo TJ; Olesik J; Wang Y; Heldwein E; Li X
    J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28583949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi.
    Ouyang Z; He M; Oman T; Yang XF; Norgard MV
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3449-54. PubMed ID: 19218460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese and zinc regulate virulence determinants in Borrelia burgdorferi.
    Troxell B; Ye M; Yang Y; Carrasco SE; Lou Y; Yang XF
    Infect Immun; 2013 Aug; 81(8):2743-52. PubMed ID: 23690398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector.
    Revel AT; Blevins JS; Almazán C; Neil L; Kocan KM; de la Fuente J; Hagman KE; Norgard MV
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6972-7. PubMed ID: 15860579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals.
    Grassmann AA; Tokarz R; Golino C; McLain MA; Groshong AM; Radolf JD; Caimano MJ
    J Clin Invest; 2023 Mar; 133(5):. PubMed ID: 36649080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal map of transcriptome changes in the Lyme pathogen
    Sapiro AL; Hayes BM; Volk RF; Zhang JY; Brooks DM; Martyn C; Radkov A; Zhao Z; Kinnersley M; Secor PR; Zaro BW; Chou S
    Elife; 2023 Jul; 12():. PubMed ID: 37449477
    [No Abstract]   [Full Text] [Related]  

  • 8. BosR (BB0647) governs virulence expression in Borrelia burgdorferi.
    Ouyang Z; Kumar M; Kariu T; Haq S; Goldberg M; Pal U; Norgard MV
    Mol Microbiol; 2009 Dec; 74(6):1331-43. PubMed ID: 19889086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism.
    Ouyang Z; Deka RK; Norgard MV
    PLoS Pathog; 2011 Feb; 7(2):e1001272. PubMed ID: 21347346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin.
    Troxell B; Xu H; Yang XF
    J Biol Chem; 2012 Jun; 287(23):19284-93. PubMed ID: 22500025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a conditional bosR mutant in Borrelia burgdorferi.
    Hyde JA; Shaw DK; Smith R; Trzeciakowski JP; Skare JT
    Infect Immun; 2010 Jan; 78(1):265-74. PubMed ID: 19858309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BadR (BB0693) controls growth phase-dependent induction of rpoS and bosR in Borrelia burgdorferi via recognizing TAAAATAT motifs.
    Ouyang Z; Zhou J
    Mol Microbiol; 2015 Dec; 98(6):1147-67. PubMed ID: 26331438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Borrelia burgdorferi: Carbon Metabolism and the Tick-Mammal Enzootic Cycle.
    Corona A; Schwartz I
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive and Negative Regulation of Glycerol Utilization by the c-di-GMP Binding Protein PlzA in Borrelia burgdorferi.
    Zhang JJ; Chen T; Yang Y; Du J; Li H; Troxell B; He M; Carrasco SE; Gomelsky M; Yang XF
    J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30181123
    [No Abstract]   [Full Text] [Related]  

  • 15. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin.
    Zhang K; Bian J; Deng Y; Smith A; Nunez RE; Li MB; Pal U; Yu AM; Qiu W; Ealick SE; Li C
    Nat Microbiol; 2016 Nov; 2():16213. PubMed ID: 27869793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene regulation in Borrelia burgdorferi.
    Samuels DS
    Annu Rev Microbiol; 2011; 65():479-99. PubMed ID: 21801026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lyme disease risk in southern California: abiotic and environmental drivers of Ixodes pacificus (Acari: Ixodidae) density and infection prevalence with Borrelia burgdorferi.
    MacDonald AJ; Hyon DW; Brewington JB; O'Connor KE; Swei A; Briggs CJ
    Parasit Vectors; 2017 Jan; 10(1):7. PubMed ID: 28057067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dual Luciferase Reporter System for
    Adams PP; Flores Avile C; Jewett MW
    Front Cell Infect Microbiol; 2017; 7():225. PubMed ID: 28620587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel iron- and copper-binding protein in the Lyme disease spirochaete.
    Wang P; Lutton A; Olesik J; Vali H; Li X
    Mol Microbiol; 2012 Dec; 86(6):1441-51. PubMed ID: 23061404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi.
    Sze CW; Li C
    Infect Immun; 2011 Mar; 79(3):1270-9. PubMed ID: 21173314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.