These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 24298557)
1. A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses. Huang X; Cheng Q; Du Z Biomed Res Int; 2013; 2013():984028. PubMed ID: 24298557 [TBL] [Abstract][Full Text] [Related]
2. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting. Huang X; Yang Y; Wang G; Cheng Q; Du Z RNA; 2014 May; 20(5):587-93. PubMed ID: 24671765 [TBL] [Abstract][Full Text] [Related]
3. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses. Wang G; Yang Y; Huang X; Du Z J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560 [TBL] [Abstract][Full Text] [Related]
4. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853 [TBL] [Abstract][Full Text] [Related]
5. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. Giedroc DP; Theimer CA; Nixon PL J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589 [TBL] [Abstract][Full Text] [Related]
6. Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods. Chang KC Comput Math Methods Med; 2012; 2012():569870. PubMed ID: 22545064 [TBL] [Abstract][Full Text] [Related]
7. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999 [TBL] [Abstract][Full Text] [Related]
9. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus. Marczinke B; Fisher R; Vidakovic M; Bloys AJ; Brierley I J Mol Biol; 1998 Nov; 284(2):205-25. PubMed ID: 9813113 [TBL] [Abstract][Full Text] [Related]
10. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses. Huang X; Du Z J Biomol Struct Dyn; 2023 Dec; ():1-13. PubMed ID: 38095458 [TBL] [Abstract][Full Text] [Related]
11. Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site. Du Z; Holland JA; Hansen MR; Giedroc DP; Hoffman DW J Mol Biol; 1997 Jul; 270(3):464-70. PubMed ID: 9237911 [TBL] [Abstract][Full Text] [Related]
12. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Hansen TM; Reihani SN; Oddershede LB; Sørensen MA Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398 [TBL] [Abstract][Full Text] [Related]
13. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986 [TBL] [Abstract][Full Text] [Related]
15. Replacement of murine leukemia virus readthrough mechanism by human immunodeficiency virus frameshift allows synthesis of viral proteins and virus replication. Brunelle MN; Brakier-Gingras L; Lemay G J Virol; 2003 Mar; 77(5):3345-50. PubMed ID: 12584361 [TBL] [Abstract][Full Text] [Related]
16. Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting. Wang X; Xuan Y; Han Y; Ding X; Ye K; Yang F; Gao P; Goff SP; Gao G Cell; 2019 Jan; 176(3):625-635.e14. PubMed ID: 30682371 [TBL] [Abstract][Full Text] [Related]
17. A basis for new approaches to the chemotherapy of AIDS: novel genes in HIV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression. Taylor EW; Ramanathan CS; Jalluri RK; Nadimpalli RG J Med Chem; 1994 Aug; 37(17):2637-54. PubMed ID: 8064794 [TBL] [Abstract][Full Text] [Related]
18. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity. Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769 [TBL] [Abstract][Full Text] [Related]
19. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Cornish PV; Hennig M; Giedroc DP Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12694-9. PubMed ID: 16123125 [TBL] [Abstract][Full Text] [Related]
20. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]