BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 24299086)

  • 1. Habitat modulates population-level responses of freshwater salmon growth to a century of change in climate and competition.
    Price MHH; Moore JW; McKinnell S; Connors BM; Reynolds JD
    Glob Chang Biol; 2024 Jan; 30(1):e17095. PubMed ID: 38273478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single generation in the wild increases fitness for descendants of hatchery-origin Chinook salmon (
    Dayan DI; Sard NM; Johnson MA; Fitzpatrick CK; Couture R; O'Malley KG
    Evol Appl; 2024 Apr; 17(4):e13678. PubMed ID: 38617826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon (
    Bowen L; von Biela VR; McCormick SD; Regish AM; Waters SC; Durbin-Johnson B; Britton M; Settles ML; Donnelly DS; Laske SM; Carey MP; Brown RJ; Zimmerman CE
    Conserv Physiol; 2020; 8(1):coaa084. PubMed ID: 34512988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modeled comparison of direct and food web-mediated impacts of common pesticides on Pacific salmon.
    Macneale KH; Spromberg JA; Baldwin DH; Scholz NL
    PLoS One; 2014; 9(3):e92436. PubMed ID: 24686837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connecting thiamine availability to the microbial community composition in Chinook salmon spawning habitats of the Sacramento River basin.
    Suffridge CP; Shannon KC; Matthews H; Johnson RC; Jeffres C; Mantua N; Ward AE; Holmes E; Kindopp J; Aidoo M; Colwell FS
    Appl Environ Microbiol; 2024 Jan; 90(1):e0176023. PubMed ID: 38084986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chinook salmon depth distributions on the continental shelf are shaped by interactions between location, season, and individual condition.
    Freshwater C; Anderson SC; Huff DD; Smith JM; Jackson D; Hendriks B; Hinch SG; Johnston S; Trites AW; King J
    Mov Ecol; 2024 Mar; 12(1):21. PubMed ID: 38491373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change sensitivity index for Pacific salmon habitat in southeast Alaska.
    Shanley CS; Albert DM
    PLoS One; 2014; 9(8):e104799. PubMed ID: 25127398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon.
    Muñoz NJ; Anttila K; Chen Z; Heath JW; Farrell AP; Neff BD
    Proc Biol Sci; 2014 Aug; 281(1789):20141082. PubMed ID: 25009055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Adaptation for Conservation Targets (ACT) framework: a tool for incorporating climate change into natural resource management.
    Cross MS; Zavaleta ES; Bachelet D; Brooks ML; Enquist CA; Fleishman E; Graumlich LJ; Groves CR; Hannah L; Hansen L; Hayward G; Koopman M; Lawler JJ; Malcolm J; Nordgren J; Petersen B; Rowland EL; Scott D; Shafer SL; Shaw MR; Tabor GM
    Environ Manage; 2012 Sep; 50(3):341-51. PubMed ID: 22773068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid.
    Johnson SL; Villarroel M; Rosengrave P; Carne A; Kleffmann T; Lokman PM; Gemmell NJ
    PLoS One; 2014; 9(8):e104155. PubMed ID: 25089903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping Uncertainties in the Upstream: The Case of PLGA Nanoparticles in Salmon Vaccines.
    Nielsen KN; Fredriksen BN; Myhr AI
    Nanoethics; 2011 Apr; 5(1):57-71. PubMed ID: 21603040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snake River sockeye and Chinook salmon in a changing climate: Implications for upstream migration survival during recent extreme and future climates.
    Crozier LG; Siegel JE; Wiesebron LE; Trujillo EM; Burke BJ; Sandford BP; Widener DL
    PLoS One; 2020; 15(9):e0238886. PubMed ID: 32997674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating climate science in applications of the US endangered species act for aquatic species.
    McClure MM; Alexander M; Borggaard D; Boughton D; Crozier L; Griffis R; Jorgensen JC; Lindley ST; Nye J; Rowland MJ; Seney EE; Snover A; Toole C; VAN Houtan K
    Conserv Biol; 2013 Dec; 27(6):1222-33. PubMed ID: 24299088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process.
    Quinn TP; Kinnison MT; Unwin MJ
    Genetica; 2001; 112-113():493-513. PubMed ID: 11838785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The British river of the future: how climate change and human activity might affect two contrasting river ecosystems in England.
    Johnson AC; Acreman MC; Dunbar MJ; Feist SW; Giacomello AM; Gozlan RE; Hinsley SA; Ibbotson AT; Jarvie HP; Jones JI; Longshaw M; Maberly SC; Marsh TJ; Neal C; Newman JR; Nunn MA; Pickup RW; Reynard NS; Sullivan CA; Sumpter JP; Williams RJ
    Sci Total Environ; 2009 Aug; 407(17):4787-98. PubMed ID: 19505713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.
    Jorgensen JC; McClure MM; Sheer MB; Munn NL
    Conserv Biol; 2013 Dec; 27(6):1201-11. PubMed ID: 24299086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).
    Walters AW; Bartz KK; McClure MM
    Conserv Biol; 2013 Dec; 27(6):1179-89. PubMed ID: 24299084
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.