BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24299193)

  • 1. Differential effects of temporal regularity on auditory-evoked response amplitude: a decrease in silence and increase in noise.
    Okamoto H; Teismann H; Keceli S; Pantev C; Kakigi R
    Behav Brain Funct; 2013 Dec; 9():44. PubMed ID: 24299193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory cortex tracks the temporal regularity of sustained noisy sounds.
    Lütkenhöner B; Seither-Preisler A; Krumbholz K; Patterson RD
    Hear Res; 2011 Feb; 272(1-2):85-94. PubMed ID: 21073933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing the neural basis of auditory entrainment.
    Lehmann A; Arias DJ; Schönwiesner M
    Neuroscience; 2016 Nov; 337():306-314. PubMed ID: 27667358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise.
    Miettinen I; Alku P; Salminen N; May PJ; Tiitinen H
    Brain Res; 2011 Jan; 1367():298-309. PubMed ID: 20969833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involuntary monitoring of sound signals in noise is reflected in the human auditory evoked N1m response.
    Lagemann L; Okamoto H; Teismann H; Pantev C
    PLoS One; 2012; 7(2):e31634. PubMed ID: 22389671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory temporal processing in healthy aging: a magnetoencephalographic study.
    Sörös P; Teismann IK; Manemann E; Lütkenhöner B
    BMC Neurosci; 2009 Apr; 10():34. PubMed ID: 19351410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual categorization of sound spectral envelopes reflected in auditory-evoked N1m.
    Mizuochi T; Yumoto M; Karino S; Itoh K; Yamakawa K; Kaga K
    Neuroreport; 2005 Apr; 16(6):555-8. PubMed ID: 15812306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory sustained field responses to periodic noise.
    Keceli S; Inui K; Okamoto H; Otsuru N; Kakigi R
    BMC Neurosci; 2012 Jan; 13():7. PubMed ID: 22221469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding of frequency-modulation (FM) rates in human auditory cortex.
    Okamoto H; Kakigi R
    Sci Rep; 2015 Dec; 5():18143. PubMed ID: 26656920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound processing hierarchy within human auditory cortex.
    Okamoto H; Stracke H; Bermudez P; Pantev C
    J Cogn Neurosci; 2011 Aug; 23(8):1855-63. PubMed ID: 20521859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dependence of the auditory evoked N1m decrement on the bandwidth of preceding notch-filtered noise.
    Okamoto H; Kakigi R; Gunji A; Kubo T; Pantev C
    Eur J Neurosci; 2005 Apr; 21(7):1957-61. PubMed ID: 15869488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention improves population-level frequency tuning in human auditory cortex.
    Okamoto H; Stracke H; Wolters CH; Schmael F; Pantev C
    J Neurosci; 2007 Sep; 27(39):10383-90. PubMed ID: 17898210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural adaptation to silence in the human auditory cortex: a magnetoencephalographic study.
    Okamoto H; Kakigi R
    Brain Behav; 2014; 4(6):858-66. PubMed ID: 25365810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory detection of motion velocity in humans: a magnetoencephalographic study.
    Xiang J; Daniel SJ; Ishii R; Holowka S; Harrison RV; Chuang S
    Brain Topogr; 2005; 17(3):139-49. PubMed ID: 15974473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory temporal edge detection in human auditory cortex.
    Chait M; Poeppel D; Simon JZ
    Brain Res; 2008 Jun; 1213():78-90. PubMed ID: 18455707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural generators underlying concurrent sound segregation.
    Arnott SR; Bardouille T; Ross B; Alain C
    Brain Res; 2011 Apr; 1387():116-24. PubMed ID: 21362407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory evoked responses in human auditory cortex to the variation of sound intensity in an ongoing tone.
    Soeta Y; Nakagawa S
    Hear Res; 2012 May; 287(1-2):67-75. PubMed ID: 22726618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.
    Okamoto H; Stracke H; Lagemann L; Pantev C
    J Neurophysiol; 2010 Jan; 103(1):244-9. PubMed ID: 19889852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-stage processing of sounds explains behavioral performance variations due to changes in stimulus contrast and selective attention: an MEG study.
    Kauramäki J; Jääskeläinen IP; Hänninen JL; Auranen T; Nummenmaa A; Lampinen J; Sams M
    PLoS One; 2012; 7(10):e46872. PubMed ID: 23071654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up driven involuntary attention modulates auditory signal in noise processing.
    Lagemann L; Okamoto H; Teismann H; Pantev C
    BMC Neurosci; 2010 Dec; 11():156. PubMed ID: 21192798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.