These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24299661)

  • 1. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media.
    Sun H; Zhang Y; Chen W; Reeves DM
    J Contam Hydrol; 2014 Feb; 157():47-58. PubMed ID: 24299661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport.
    Baeumer B; Zhang Y; Schumer R
    Ground Water; 2015; 53(5):699-708. PubMed ID: 25214174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
    Garrard RM; Zhang Y; Wei S; Sun H; Qian J
    Ground Water; 2017 Nov; 55(6):857-870. PubMed ID: 28692785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation.
    Rolle M; Eberhardt C; Chiogna G; Cirpka OA; Grathwohl P
    J Contam Hydrol; 2009 Nov; 110(3-4):130-42. PubMed ID: 19896237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights about transport mechanisms and fracture flow channeling from multi-scale observations of tracer dispersion in shallow fractured crystalline rock.
    Guihéneuf N; Bour O; Boisson A; Le Borgne T; Becker MW; Nigon B; Wajiduddin M; Ahmed S; Maréchal JC
    J Contam Hydrol; 2017 Nov; 206():18-33. PubMed ID: 28965710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem.
    Nick HM; Raoof A; Centler F; Thullner M; Regnier P
    J Contam Hydrol; 2013 Feb; 145():90-104. PubMed ID: 23334209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of one-dimensional scale-dependent fractional advection-dispersion.
    Huang G; Huang Q; Zhan H
    J Contam Hydrol; 2006 May; 85(1-2):53-71. PubMed ID: 16494965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.
    Lee J; Rolle M; Kitanidis PK
    J Contam Hydrol; 2018 May; 212():41-54. PubMed ID: 28943098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems.
    Ye Y; Chiogna G; Cirpka O; Grathwohl P; Rolle M
    J Contam Hydrol; 2015 Jan; 172():33-47. PubMed ID: 25462641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in)sensitivity and roughness dependence.
    Wang L; Bayani Cardenas M
    J Contam Hydrol; 2017 Mar; 198():1-10. PubMed ID: 28214619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General Backward Model to Identify the Source for Contaminants Undergoing Non-Fickian Diffusion in Water.
    Zhang Y; Brusseau ML; Neupauer RM; Wei W
    Environ Sci Technol; 2022 Aug; 56(15):10743-10753. PubMed ID: 35875912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous transport of colloids and solutes in a shear zone.
    Kosakowski G
    J Contam Hydrol; 2004 Aug; 72(1-4):23-46. PubMed ID: 15240165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing "anomalous" contaminant transport in porous media: the CTRW MATLAB toolbox.
    Cortis A; Berkowitz B
    Ground Water; 2005; 43(6):947-50. PubMed ID: 16324017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Simulation of Solute Transport in Saturated Porous Media with Bounded Domains.
    Mohammadi B; Mehdinejadiani B
    Ground Water; 2021 Nov; 59(6):892-904. PubMed ID: 34128237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling.
    Ballarini E; Bauer S; Eberhardt C; Beyer C
    Ground Water; 2014; 52(3):368-77. PubMed ID: 23675977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media.
    Blessent D; Jørgensen PR; Therrien R
    Ground Water; 2014; 52(1):84-95. PubMed ID: 23461382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media.
    Levy M; Berkowitz B
    J Contam Hydrol; 2003 Jul; 64(3-4):203-26. PubMed ID: 12814881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fractional-order dual-continuum model to capture non-Fickian solute transport in a regional-scale fractured aquifer.
    Dong P; Yin M; Zhang Y; Chen K; Finkel M; Grathwohl P; Zheng C
    J Contam Hydrol; 2023 Sep; 258():104231. PubMed ID: 37597333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.