These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24299770)

  • 1. The effect of alginate on DNA delivery from layer-by-layer assembled films.
    Hu WW; Tsou SL
    Carbohydr Polym; 2014 Jan; 101():240-8. PubMed ID: 24299770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate-graft-PEI as a gene delivery vector with high efficiency and low cytotoxicity.
    He W; Guo Z; Wen Y; Wang Q; Xie B; Zhu S; Wang Q
    J Biomater Sci Polym Ed; 2012; 23(1-4):315-31. PubMed ID: 21244745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting.
    Zhou J; Romero G; Rojas E; Ma L; Moya S; Gao C
    J Colloid Interface Sci; 2010 May; 345(2):241-7. PubMed ID: 20227712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient gene transfection using chitosan-alginate core-shell nanoparticles.
    You JO; Liu YC; Peng CA
    Int J Nanomedicine; 2006; 1(2):173-80. PubMed ID: 17722533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study.
    Martins GV; Merino EG; Mano JF; Alves NM
    Macromol Biosci; 2010 Dec; 10(12):1444-55. PubMed ID: 21125694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene immobilization on alginate/polycaprolactone fibers through electrophoretic deposition to promote in situ transfection efficiency and biocompatibility.
    Hu WW; Ting JC
    Int J Biol Macromol; 2019 Jan; 121():1337-1345. PubMed ID: 30201562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application.
    Hu WW; Hu ZC
    Int J Biol Macromol; 2018 Oct; 117():1169-1178. PubMed ID: 29883703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrapment efficiency and release characteristics of polyethyleneimine-treated or -untreated calcium alginate beads loaded with propranolol-resin complex.
    Halder A; Maiti S; Sa B
    Int J Pharm; 2005 Sep; 302(1-2):84-94. PubMed ID: 16102927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug.
    Zhao D; Liu CJ; Zhuo RX; Cheng SX
    Mol Pharm; 2012 Oct; 9(10):2887-93. PubMed ID: 22894610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyethylenimine derived nanoparticles for efficient gene delivery.
    Pathak A; Patnaik S; Gupta KC
    Nucleic Acids Symp Ser (Oxf); 2009; (53):57-8. PubMed ID: 19749258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery.
    Zhang Y; Lin L; Liu L; Liu F; Maruyama A; Tian H; Chen X
    Carbohydr Polym; 2018 Dec; 201():246-256. PubMed ID: 30241817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic deposition to promote layer-by-layer assembly for in situ gene delivery application.
    Hu WW; Zheng YR
    Colloids Surf B Biointerfaces; 2015 Sep; 133():171-8. PubMed ID: 26101817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEI-alginate nanocomposites: efficient non-viral vectors for nucleic acids.
    Patnaik S; Arif M; Pathak A; Singh N; Gupta KC
    Int J Pharm; 2010 Jan; 385(1-2):194-202. PubMed ID: 19874879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system.
    Jain S; Amiji M
    Biomacromolecules; 2012 Apr; 13(4):1074-85. PubMed ID: 22385328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayer matrix composed of polycation/DNA complex and sodium alginate gel as a tumor cell catcher.
    Zeng X; Sun YX; Qu W; Zhuo RX; Zhang XZ
    Macromol Biosci; 2011 Nov; 11(11):1579-85. PubMed ID: 21954183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid).
    Gu CH; Wang JJ; Yu Y; Sun H; Shuai N; Wei B
    Carbohydr Polym; 2013 Feb; 92(2):1579-85. PubMed ID: 23399192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery.
    Zhao D; Zhuo RX; Cheng SX
    Mol Biosyst; 2012 Mar; 8(3):753-9. PubMed ID: 22159070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model.
    Ruvinov E; Leor J; Cohen S
    Biomaterials; 2010 Jun; 31(16):4573-82. PubMed ID: 20206988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis.
    Krebs MD; Salter E; Chen E; Sutter KA; Alsberg E
    J Biomed Mater Res A; 2010 Mar; 92(3):1131-8. PubMed ID: 19322877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses.
    Li P; Luo Z; Liu P; Gao N; Zhang Y; Pan H; Liu L; Wang C; Cai L; Ma Y
    J Control Release; 2013 Jun; 168(3):271-9. PubMed ID: 23562637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.