BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 24299858)

  • 1. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.
    Singh B; Sharma V
    Carbohydr Polym; 2014 Jan; 101():928-40. PubMed ID: 24299858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications.
    Singh B; Sharma V
    Carbohydr Polym; 2017 Feb; 157():185-195. PubMed ID: 27987904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery.
    Sadat Hosseini M; Hemmati K; Ghaemy M
    Int J Biol Macromol; 2016 Jan; 82():806-15. PubMed ID: 26434524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin.
    Pathania D; Verma C; Negi P; Tyagi I; Asif M; Kumar NS; Al-Ghurabi EH; Agarwal S; Gupta VK
    Carbohydr Polym; 2018 Sep; 196():262-271. PubMed ID: 29891295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation study of structural parameters of bioadhesive polymers in designing a tunable drug delivery system.
    Singh B; Sharma V
    Langmuir; 2014 Jul; 30(28):8580-91. PubMed ID: 24963826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties.
    Singh B; Kumar A
    Int J Biol Macromol; 2018 Mar; 108():477-488. PubMed ID: 29225178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating physiochemical characteristics of tragacanth gum-gelatin network hydrogels designed through graft copolymerization technique.
    Thakur N; Singh B
    Int J Biol Macromol; 2024 May; 266(Pt 2):131082. PubMed ID: 38537849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tragacanth gum-based multifunctional hydrogels and green synthesis of their silver nanocomposites for drug delivery and inactivation of multidrug resistant bacteria.
    Nagaraja K; Rao KM; Reddy GV; Rao KSVK
    Int J Biol Macromol; 2021 Mar; 174():502-511. PubMed ID: 33539957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ethylene glycol dimethacrylate on swelling and on metformin hydrochloride release behavior of chemically crosslinked pH-sensitive acrylic acid-polyvinyl alcohol hydrogel.
    Akhtar MF; Ranjha NM; Hanif M
    Daru; 2015 Aug; 23(1):41. PubMed ID: 26283081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of sterile mucoadhesive hydrogels for use in drug delivery: effect of radiation on network structure.
    Singh B; Varshney L; Sharma V
    Colloids Surf B Biointerfaces; 2014 Sep; 121():230-7. PubMed ID: 25016425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels.
    Singh B; Dhiman A
    Curr Drug Deliv; 2017; 14(7):981-991. PubMed ID: 28137241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug release from enzyme-mediated in situ-forming hydrogel based on gum tragacanth-tyramine conjugate.
    Dehghan-Niri M; Tavakol M; Vasheghani-Farahani E; Ganji F
    J Biomater Appl; 2015 May; 29(10):1343-50. PubMed ID: 25592284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients.
    Rodrigues Sousa H; Lima IS; Neris LML; Silva AS; Santos Nascimento AMS; Araújo FP; Ratke RF; Silva DA; Osajima JA; Bezerra LR; Silva-Filho EC
    Molecules; 2021 May; 26(9):. PubMed ID: 34063701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications.
    Singh B; Varshney L; Francis S; Rajneesh
    Int J Biol Macromol; 2016 Jul; 88():586-602. PubMed ID: 27020943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation-induced graft copolymerization of N‑vinyl imidazole onto moringa gum polysaccharide for making hydrogels for biomedical applications.
    Singh B; Kumar A
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1369-1378. PubMed ID: 30261250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and release of verapamil hydrochloride from polycaprolactone/acrylic acid (PCL/AA) hydrogels.
    Hanif M; Ranjha NM; Shoaib MH; Mudasser J; Yousuf RI; Khan A; Zia-Ul-Haq M
    Pak J Pharm Sci; 2011 Oct; 24(4):503-11. PubMed ID: 21959812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpenetrating hydrogels of O-carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir.
    Jana S; Sharma R; Maiti S; Sen KK
    Int J Biol Macromol; 2016 Nov; 92():1034-1039. PubMed ID: 27514441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel formation by radiation induced crosslinked copolymerization of acrylamide onto moringa gum for use in drug delivery applications.
    Singh B; Kumar A
    Carbohydr Polym; 2018 Nov; 200():262-270. PubMed ID: 30177166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neem gum based pH responsive hydrogel matrix: A new pharmaceutical excipient for the sustained release of anticancer drug.
    Mankotia P; Choudhary S; Sharma K; Kumar V; Kaur Bhatia J; Parmar A; Sharma S; Sharma V
    Int J Biol Macromol; 2020 Jan; 142():742-755. PubMed ID: 31739022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide.
    Samanta HS; Ray SK
    Carbohydr Polym; 2014 Jan; 99():666-78. PubMed ID: 24274557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.