These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24299972)

  • 1. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.
    Waters BH; Smith JR; Bonde P
    ASAIO J; 2014; 60(1):31-7. PubMed ID: 24299972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward total implantability using free-range resonant electrical energy delivery system: achieving untethered ventricular assist device operation over large distances.
    Waters B; Sample A; Smith J; Bonde P
    Cardiol Clin; 2011 Nov; 29(4):609-25. PubMed ID: 22062212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.
    Wang JX; Smith JR; Bonde P
    Ann Thorac Surg; 2014 Apr; 97(4):1467-74. PubMed ID: 24530103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical power to run ventricular assist devices using the Free-range Resonant Electrical Energy Delivery system.
    Waters BH; Park J; Bouwmeester JC; Valdovinos J; Geirsson A; Sample AP; Smith JR; Bonde P
    J Heart Lung Transplant; 2018 Dec; 37(12):1467-1474. PubMed ID: 30228086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection.
    Sun T; Xie X; Li G; Gu Y; Deng Y; Wang Z
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3247-54. PubMed ID: 22759436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary validation of a new magnetic wireless blood pump.
    Kim SH; Ishiyama K; Hashi S; Shiraishi Y; Hayatsu Y; Akiyama M; Saiki Y; Yambe T
    Artif Organs; 2013 Oct; 37(10):920-6. PubMed ID: 23634711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editorial comments on "towards total implantability using FREE-D system: achieving un-tethered VAD operation over large distances".
    Elefteriades JA
    Cardiol Clin; 2011 Nov; 29(4):627-8. PubMed ID: 22062213
    [No Abstract]   [Full Text] [Related]  

  • 9. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].
    Guo X; Ge B; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):724-9. PubMed ID: 24059044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.
    Khan SR; Choi G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device.
    Pya Y; Maly J; Bekbossynova M; Salov R; Schueler S; Meyns B; Kassif Y; Massetti M; Zilbershlag M; Netuka I
    J Heart Lung Transplant; 2019 Apr; 38(4):339-343. PubMed ID: 30945635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demystifying ventricular assist devices.
    Litton KA
    Crit Care Nurs Q; 2011; 34(3):200-7. PubMed ID: 21670618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of a Post-Auricle Wireless Power System for Pediatric Mechanical Circulatory Support Pumps.
    Nagra S; Hussain F; Alvarez I; Valdovinos J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1514-1517. PubMed ID: 30440680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.
    Li X; Meng X; Tsui CY; Ki WH
    IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):875-84. PubMed ID: 26742141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011.
    Holman WL; Naftel DC; Eckert CE; Kormos RL; Goldstein DJ; Kirklin JK
    J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety considerations for wireless delivery of continuous power to implanted medical devices.
    Lucke L; Bluvshtein V
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():286-9. PubMed ID: 25569953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.
    Letzen B; Park J; Tuzun Z; Bonde P
    ASAIO J; 2018; 64(2):147-153. PubMed ID: 28938307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.
    Ramrakhyani AK; Mirabbasi S; Mu Chiao
    IEEE Trans Biomed Circuits Syst; 2011 Feb; 5(1):48-63. PubMed ID: 23850978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-frequency versatile wireless power transfer technology for biomedical implants.
    Jiang H; Zhang J; Lan D; Chao ; Liou S; Shahnasser H; Fechter R; Hirose S; Harrison M; Roy S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):526-35. PubMed ID: 23893211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; BĂ©langer G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.