These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24300101)

  • 1. Budding yeast protein extraction and purification for the study of function, interactions, and post-translational modifications.
    Szymanski EP; Kerscher O
    J Vis Exp; 2013 Oct; (80):e50921. PubMed ID: 24300101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein purification technique that allows detection of sumoylation and ubiquitination of budding yeast kinetochore proteins Ndc10 and Ndc80.
    Ohkuni K; Takahashi Y; Basrai MA
    J Vis Exp; 2015 May; (99):e52482. PubMed ID: 25992961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.
    Valero ML; Sendra R; Pamblanco M
    J Proteomics; 2016 Mar; 136():183-92. PubMed ID: 26778144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A SUMO-targeted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1.
    Westerbeck JW; Pasupala N; Guillotte M; Szymanski E; Matson BC; Esteban C; Kerscher O
    Mol Biol Cell; 2014 Jan; 25(1):1-16. PubMed ID: 24196836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome.
    Wykoff DD; O'Shea EK
    Mol Cell Proteomics; 2005 Jan; 4(1):73-83. PubMed ID: 15596868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae.
    Ulrich HD; Davies AA
    Methods Mol Biol; 2009; 497():81-103. PubMed ID: 19107412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoaffinity purification of endogenous proteins from
    Jaiswal D; Turniansky R; Green EM
    STAR Protoc; 2021 Dec; 2(4):100945. PubMed ID: 34816128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated nuclei preparation and methods for analysis of histone modifications in yeast.
    Kizer KO; Xiao T; Strahl BD
    Methods; 2006 Dec; 40(4):296-302. PubMed ID: 17101440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates.
    Mullen JR; Brill SJ
    J Biol Chem; 2008 Jul; 283(29):19912-21. PubMed ID: 18499666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of PCNA modifications in Saccharomyces cerevisiae.
    Davies AA; Ulrich HD
    Methods Mol Biol; 2012; 920():543-67. PubMed ID: 22941627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases.
    Jalal D; Chalissery J; Hassan AH
    Nucleic Acids Res; 2017 Mar; 45(5):2242-2261. PubMed ID: 28115630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
    Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M
    Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic sumoylation by PIAS-type Siz1-SUMO ligase.
    Takahashi Y; Iwase M; Strunnikov AV; Kikuchi Y
    Cell Cycle; 2008 Jun; 7(12):1738-44. PubMed ID: 18583943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein extraction from Saccharomyces cerevisiae at different growth phases.
    Mukherjee M; Nandi A; Chandra K; Saikia SK; Jana CK; Das N
    J Microbiol Methods; 2020 May; 172():105906. PubMed ID: 32240705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods to study SUMO dynamics in yeast.
    Pabst S; Döring LM; Petreska N; Dohmen RJ
    Methods Enzymol; 2019; 618():187-210. PubMed ID: 30850052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs.
    Inada T; Winstall E; Tarun SZ; Yates JR; Schieltz D; Sachs AB
    RNA; 2002 Jul; 8(7):948-58. PubMed ID: 12166649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance.
    Höpfler M; Kern MJ; Straub T; Prytuliak R; Habermann BH; Pfander B; Jentsch S
    EMBO J; 2019 Jun; 38(11):. PubMed ID: 31015336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality control of a transcriptional regulator by SUMO-targeted degradation.
    Wang Z; Prelich G
    Mol Cell Biol; 2009 Apr; 29(7):1694-706. PubMed ID: 19139279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and purification of the cystic fibrosis transmembrane conductance regulator protein in Saccharomyces cerevisiae.
    O'Ryan L; Rimington T; Cant N; Ford RC
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22433465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly efficient, one-step purification of the Hsp70 chaperone Ssa1.
    Griffith AA; Boutin J; Holmes W
    Protein Expr Purif; 2018 Dec; 152():56-63. PubMed ID: 30030046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.