BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 24300213)

  • 41. Rhynchophylline Loaded-mPEG-PLGA Nanoparticles Coated with Tween-80 for Preliminary Study in Alzheimer's Disease.
    Xu R; Wang J; Xu J; Song X; Huang H; Feng Y; Fu C
    Int J Nanomedicine; 2020; 15():1149-1160. PubMed ID: 32110013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson's disease treatment.
    Bi C; Wang A; Chu Y; Liu S; Mu H; Liu W; Wu Z; Sun K; Li Y
    Int J Nanomedicine; 2016; 11():6547-6559. PubMed ID: 27994458
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting.
    Mahajan HS; Mahajan MS; Nerkar PP; Agrawal A
    Drug Deliv; 2014 Mar; 21(2):148-54. PubMed ID: 24128122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of mannan modified anionic PCL-PEG-PCL nanoparticles at one-step for bFGF antigen delivery to improve humoral immunity.
    Gou M; Dai M; Li X; Yang L; Huang M; Wang Y; Kan B; Lu Y; Wei Y; Qian Z
    Colloids Surf B Biointerfaces; 2008 Jun; 64(1):135-9. PubMed ID: 18249528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles.
    Xin H; Sha X; Jiang X; Chen L; Law K; Gu J; Chen Y; Wang X; Fang X
    Biomaterials; 2012 Feb; 33(5):1673-81. PubMed ID: 22133551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats.
    Zhang QZ; Zha LS; Zhang Y; Jiang WM; Lu W; Shi ZQ; Jiang XG; Fu SK
    J Drug Target; 2006 Jun; 14(5):281-90. PubMed ID: 16882548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intranasal delivery of α-asarone to the brain with lactoferrin-modified mPEG-PLA nanoparticles prepared by premix membrane emulsification.
    Pan L; Zhou J; Ju F; Zhu H
    Drug Deliv Transl Res; 2018 Feb; 8(1):83-96. PubMed ID: 29134552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats.
    Zhao YZ; Li X; Lu CT; Lin M; Chen LJ; Xiang Q; Zhang M; Jin RR; Jiang X; Shen XT; Li XK; Cai J
    Nanomedicine; 2014 May; 10(4):755-64. PubMed ID: 24200526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brain pharmacokinetics of neurotoxin-loaded PLA nanoparticles modified with chitosan after intranasal administration in awake rats.
    Zhang X; Liu L; Chai G; Zhang X; Li F
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1618-24. PubMed ID: 24087853
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PLA-PEG particles as nasal protein carriers: the influence of the particle size.
    Vila A; Sánchez A; Evora C; Soriano I; McCallion O; Alonso MJ
    Int J Pharm; 2005 Mar; 292(1-2):43-52. PubMed ID: 15725552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain.
    Hanafy AS; Farid RM; ElGamal SS
    Drug Dev Ind Pharm; 2015; 41(12):2055-68. PubMed ID: 26133084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nose to Brain Delivery of Galantamine Loaded Nanoparticles: In-vivo Pharmacodynamic and Biochemical Study in Mice.
    Sunena ; Singh SK; Mishra DN
    Curr Drug Deliv; 2019; 16(1):51-58. PubMed ID: 30289074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in royal college of surgeons rats.
    Sakai T; Kuno N; Takamatsu F; Kimura E; Kohno H; Okano K; Kitahara K
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3381-7. PubMed ID: 17591912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Odorranalectin modified PEG-PLGA/PEG-PBLG curcumin-loaded nanoparticle for intranasal administration.
    Li X; Su J; Kamal Z; Guo P; Wu X; Lu L; Wu H; Qiu M
    Drug Dev Ind Pharm; 2020 Jun; 46(6):899-909. PubMed ID: 32375569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoparticlized System: Promising Approach for the Management of Alzheimer's Disease through Intranasal Delivery.
    Bahadur S; Sachan N; Harwansh RK; Deshmukh R
    Curr Pharm Des; 2020; 26(12):1331-1344. PubMed ID: 32160843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Tong Luo Jiu Nao on Aβ-degrading enzymes in AD rat brains.
    Liu Y; Hua Q; Lei H; Li P
    J Ethnopharmacol; 2011 Sep; 137(2):1035-46. PubMed ID: 21798326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.
    Agrawal M; Saraf S; Saraf S; Antimisiaris SG; Chougule MB; Shoyele SA; Alexander A
    J Control Release; 2018 Jul; 281():139-177. PubMed ID: 29772289
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease.
    Wilson B; Samanta MK; Santhi K; Kumar KP; Paramakrishnan N; Suresh B
    Brain Res; 2008 Mar; 1200():159-68. PubMed ID: 18291351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct transport of VEGF from the nasal cavity to brain.
    Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF
    Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.