These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24300341)

  • 1. Prediction of background in low-energy spectrum of Phoswich detector.
    Arun B; Manohari M; Mathiyarasu R; Rajagopal V; Jose MT
    Radiat Prot Dosimetry; 2014 Dec; 162(3):260-7. PubMed ID: 24300341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of in vivo background in phoswich lung count spectra.
    Richards NW
    Health Phys; 1999 May; 76(5):524-31. PubMed ID: 10201566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Uncertainties in lung measurements of actinides due to counting statistics.
    Nadar MY; Akar DK; Singh IS; Sawant PD; Kulkarni MS
    Appl Radiat Isot; 2019 Jan; 143():67-71. PubMed ID: 30390502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RELATIVE DISSOLUTION RATES OF RADIOACTIVE MATERIALS USED AT AWE.
    Miller TJ; Bingham D; Cockerill R; Waldren S; Moth N
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):218-20. PubMed ID: 26362139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of uncertainties in lung measurement of actinides due to non-uniform distribution of activity in lungs.
    Nadar MY; Akar DK; Rao DD; Kulkarni MS; Pradeepkumar KS
    Appl Radiat Isot; 2017 Sep; 127():109-115. PubMed ID: 28570915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement techniques for radium and the actinides in man at the Center for Human Radiobiology.
    Toohey RE; Keane AT; Rundo J
    Health Phys; 1983; 44 Suppl 1():323-41. PubMed ID: 6305878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.
    Nadar MY; Akar DK; Rao DD; Kulkarni MS; Pradeepkumar KS
    Radiat Prot Dosimetry; 2015 Dec; 167(4):461-71. PubMed ID: 25468992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DEVELOPMENT OF A RAPID PROCEDURE TO ANALYSE Pu, Am AND 90Sr IN EMERGENCY URINE BIOASSAY IN CIEMAT BIOELIMINATION LABORATORY: METHOD VALIDATION BY EMERGENCY BIOASSAY INTERCOMPARISON EXERCISES.
    Sierra I; Hernández C
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):237-41. PubMed ID: 26743257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers.
    Hare D; Tolmachev S; James A; Bishop D; Austin C; Fryer F; Doble P
    Anal Chem; 2010 Apr; 82(8):3176-82. PubMed ID: 20218581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing skull burdens of actinides using a mathematical phantom: a Monte Carlo approach.
    Bhati S; Sharma RC; Raj VV
    Radiat Prot Dosimetry; 2003; 103(3):247-54. PubMed ID: 12678387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for actinides and Sr-90 determination in urine samples.
    Alvarez A; Navarro N
    Appl Radiat Isot; 1996; 47(9-10):869-73. PubMed ID: 8976042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples.
    Singh IS; Mishra L; Yadav JR; Nadar MY; Rao DD; Pradeepkumar KS
    Appl Radiat Isot; 2015 Oct; 104():49-54. PubMed ID: 26141295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEVELOPMENT OF A NEW DETECTOR SYSTEM TO EVALUATE POSITION AND ACTIVITY OF PLUTONIUM PARTICLES IN NASAL CAVITIES.
    Morishita Y; Yamamoto S; Momose T; Kaneko JH; Nemoto N
    Radiat Prot Dosimetry; 2018 Mar; 178(4):414-421. PubMed ID: 28981916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the NaI--CsI phoswich and a hyperpure germanium array for in vivo detection of the actinides.
    Berger CD; Goans RE
    Health Phys; 1981 Apr; 40(4):535-42. PubMed ID: 6262279
    [No Abstract]   [Full Text] [Related]  

  • 15. Reduction of the low energy background of a phoswich detector.
    Garg SP; Newton D
    Health Phys; 1977 Feb; 32(2):113-6. PubMed ID: 849888
    [No Abstract]   [Full Text] [Related]  

  • 16. A monitor for neutron flux measurements up to 20 MeV.
    Ohrn A; Blomgren J; Park H; Khurana S; Nolte R; Schmidt D; Wilhelmsen K
    Radiat Prot Dosimetry; 2007; 126(1-4):394-7. PubMed ID: 17496304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of skeletal burden of "bone-seeking" radionuclides in man from in vivo scintillation measurements of the head.
    Cohen N; Spitz HB; Wrenn ME
    Health Phys; 1977 Nov; 33():431-41. PubMed ID: 201594
    [No Abstract]   [Full Text] [Related]  

  • 18. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.
    de la Fuente R; de Celis B; del Canto V; Lumbreras JM; de Celis Alonso B; Martín-Martín A; Gutierrez-Villanueva JL
    J Environ Radioact; 2008 Oct; 99(10):1553-7. PubMed ID: 18243443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid procedure for actinides and
    Hernández González C; Sierra Bercedo I
    Appl Radiat Isot; 2019 Feb; 144():19-23. PubMed ID: 30500679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gender-specific chest wall thickness prediction equations for routine measurements of 239Pu and 241Am within the lungs using HPGe detectors.
    Vickers LR
    Health Phys; 1996 Mar; 70(3):346-57. PubMed ID: 8609026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.