These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24300481)

  • 1. Changes of glaciers in the Andes of Chile and priorities for future work.
    Pellicciotti F; Ragettli S; Carenzo M; McPhee J
    Sci Total Environ; 2014 Sep; 493():1197-210. PubMed ID: 24300481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research.
    Pellicciotti F; Carenzo M; Bordoy R; Stoffel M
    Sci Total Environ; 2014 Sep; 493():1152-70. PubMed ID: 24824138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect.
    Carenzo M; Pellicciotti F; Mabillard J; Reid T; Brock BW
    Adv Water Resour; 2016 Aug; 94():457-469. PubMed ID: 28163355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of glacier modelling parameters to time, space, and model complexity: Examples from eastern slopes of Canadian Rocky Mountains.
    Silwal G; Ammar ME; Thapa A; Bonsal B; Faramarzi M
    Sci Total Environ; 2023 May; 872():162156. PubMed ID: 36773922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains.
    Ragettli S; Immerzeel WW; Pellicciotti F
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9222-7. PubMed ID: 27482082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the role of anthropogenic emissions in glaciers retreat in the central Andes of Chile.
    Cereceda-Balic F; Ruggeri MF; Vidal V; Ruiz L; Fu JS
    Environ Res; 2022 Nov; 214(Pt 1):113756. PubMed ID: 35777435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya.
    Racoviteanu AE; Williams MW; Barry RG
    Sensors (Basel); 2008 May; 8(5):3355-3383. PubMed ID: 27879883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin.
    Soncini A; Bocchiola D; Confortola G; Minora U; Vuillermoz E; Salerno F; Viviano G; Shrestha D; Senese A; Smiraglia C; Diolaiuti G
    Sci Total Environ; 2016 Sep; 565():1084-1101. PubMed ID: 27262982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning.
    Bolibar J; Rabatel A; Gouttevin I; Zekollari H; Galiez C
    Nat Commun; 2022 Jan; 13(1):409. PubMed ID: 35058461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile.
    Barandun M; Bravo C; Grobety B; Jenk T; Fang L; Naegeli K; Rivera A; Cisternas S; Münster T; Schwikowski M
    Sci Total Environ; 2022 Aug; 833():155068. PubMed ID: 35413346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glacier Geophysics: Dynamic response of glaciers to changing climate may shed light on processes in the earth's interior.
    Kamb B
    Science; 1964 Oct; 146(3642):353-65. PubMed ID: 17739514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Change of Glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data.
    Zhang Z; Liu S; Wei J; Xu J; Guo W; Bao W; Jiang Z
    PLoS One; 2016; 11(1):e0147327. PubMed ID: 26789404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia.
    Gao H; Li H; Duan Z; Ren Z; Meng X; Pan X
    Sci Total Environ; 2018 Dec; 644():1160-1170. PubMed ID: 30743829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.
    Marzeion B; Cogley JG; Richter K; Parkes D
    Science; 2014 Aug; 345(6199):919-21. PubMed ID: 25123485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future changes of precipitation types in the Peruvian Andes.
    Llactayo V; Valdivia J; Yarleque C; Callañaupa S; Villalobos-Puma E; Guizado D; Alvarado-Lugo R
    Sci Rep; 2024 Sep; 14(1):22634. PubMed ID: 39349573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting responses of Central Asian rock glaciers to global warming.
    Sorg A; Kääb A; Roesch A; Bigler C; Stoffel M
    Sci Rep; 2015 Feb; 5():8228. PubMed ID: 25657095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya based on multi-source remote sensing data from 1975 to 2015.
    Zhao X; Wang X; Wei J; Jiang Z; Zhang Y; Liu S
    Sci Total Environ; 2020 Nov; 745():140995. PubMed ID: 32758725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the impact of the Central Chile Mega Drought on debris cover, broadband albedo, and surface drainage system of a Dry Andes glacier.
    Podgórski J; Pętlicki M; Fernández A; Urrutia R; Kinnard C
    Sci Total Environ; 2023 Dec; 905():166907. PubMed ID: 37704148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates.
    Niu H; Kang S; Shi X; Paudyal R; He Y; Li G; Wang S; Pu T; Shi X
    Sci Total Environ; 2017 Mar; 581-582():848-856. PubMed ID: 28089534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of temporal change in glacial extent of Chitral watershed using Landsat data.
    Naeem UA; Shamim MA; Ejaz N; Ur Rehman H; Mustafa U; Hashmi HN; Ghumman AR
    Environ Monit Assess; 2016 Jan; 188(1):43. PubMed ID: 26687086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.