BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24301183)

  • 1. Computational identification and analysis of orphan assembly-line polyketide synthases.
    O'Brien RV; Davis RW; Khosla C; Hillenmeyer ME
    J Antibiot (Tokyo); 2014 Jan; 67(1):89-97. PubMed ID: 24301183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic mining and diversity of assembly line polyketide synthases.
    Kishore S; Khosla C
    Open Biol; 2023 Aug; 13(8):230096. PubMed ID: 37528731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and Diversity of Assembly-Line Polyketide Synthases.
    Nivina A; Yuet KP; Hsu J; Khosla C
    Chem Rev; 2019 Dec; 119(24):12524-12547. PubMed ID: 31838842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PKMiner: a database for exploring type II polyketide synthases.
    Kim J; Yi GS
    BMC Microbiol; 2012 Aug; 12():169. PubMed ID: 22871112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commodity Chemicals From Engineered Modular Type I Polyketide Synthases.
    Yuzawa S; Zargar A; Pang B; Katz L; Keasling JD
    Methods Enzymol; 2018; 608():393-415. PubMed ID: 30173771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GRINS: Genetic elements that recode assembly-line polyketide synthases and accelerate their diversification.
    Nivina A; Herrera Paredes S; Fraser HB; Khosla C
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34162709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards prediction of metabolic products of polyketide synthases: an in silico analysis.
    Yadav G; Gokhale RS; Mohanty D
    PLoS Comput Biol; 2009 Apr; 5(4):e1000351. PubMed ID: 19360130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution-guided engineering of
    Mabesoone MFJ; Leopold-Messer S; Minas HA; Chepkirui C; Chawengrum P; Reiter S; Meoded RA; Wolf S; Genz F; Magnus N; Piechulla B; Walker AS; Piel J
    Science; 2024 Mar; 383(6689):1312-1317. PubMed ID: 38513027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into polyketide biosynthesis gained from repurposing antibiotic-producing polyketide synthases to produce fuels and chemicals.
    Yuzawa S; Keasling JD; Katz L
    J Antibiot (Tokyo); 2016 Jul; 69(7):494-9. PubMed ID: 27245558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria Genomic Island.
    Mahenthiralingam E; Song L; Sass A; White J; Wilmot C; Marchbank A; Boaisha O; Paine J; Knight D; Challis GL
    Chem Biol; 2011 May; 18(5):665-77. PubMed ID: 21609847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection.
    Nguyen T; Ishida K; Jenke-Kodama H; Dittmann E; Gurgui C; Hochmuth T; Taudien S; Platzer M; Hertweck C; Piel J
    Nat Biotechnol; 2008 Feb; 26(2):225-33. PubMed ID: 18223641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ClusterCAD: a computational platform for type I modular polyketide synthase design.
    Eng CH; Backman TWH; Bailey CB; Magnan C; García Martín H; Katz L; Baldi P; Keasling JD
    Nucleic Acids Res; 2018 Jan; 46(D1):D509-D515. PubMed ID: 29040649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans.
    Shelest E; Heimerl N; Fichtner M; Sasso S
    BMC Genomics; 2015 Nov; 16():1015. PubMed ID: 26611533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases.
    Simunovic V; Zapp J; Rachid S; Krug D; Meiser P; Müller R
    Chembiochem; 2006 Aug; 7(8):1206-20. PubMed ID: 16835859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ketosynthase Domain Constrains the Design of Polyketide Synthases.
    Klaus M; Buyachuihan L; Grininger M
    ACS Chem Biol; 2020 Sep; 15(9):2422-2432. PubMed ID: 32786257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative polyketide biosynthesis by modular polyketide synthases in bacteria.
    Chen H; Du L
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):541-57. PubMed ID: 26549236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type I polyketide synthases that require discrete acyltransferases.
    Cheng YQ; Coughlin JM; Lim SK; Shen B
    Methods Enzymol; 2009; 459():165-86. PubMed ID: 19362640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A singular enzymatic megacomplex from Bacillus subtilis.
    Straight PD; Fischbach MA; Walsh CT; Rudner DZ; Kolter R
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):305-10. PubMed ID: 17190806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases.
    Till M; Race PR
    Biotechnol Lett; 2014 May; 36(5):877-88. PubMed ID: 24557077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Nonfunctional Halogenase Masquerades as an Aromatizing Dehydratase in Biosynthesis of Pyrrolic Polyketides by Type I Polyketide Synthases.
    Yi D; Niroula D; Gutekunst WR; Loper JE; Yan Q; Agarwal V
    ACS Chem Biol; 2022 Jun; 17(6):1351-1356. PubMed ID: 35675261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.