BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24301336)

  • 1. Octopus visual system: a functional MRI model for detecting neuronal electric currents without a blood-oxygen-level-dependent confound.
    Jiang X; Lu H; Shigeno S; Tan LH; Yang Y; Ragsdale CW; Gao JH
    Magn Reson Med; 2014 Nov; 72(5):1311-9. PubMed ID: 24301336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response.
    Chu R; de Zwart JA; van Gelderen P; Fukunaga M; Kellman P; Holroyd T; Duyn JH
    Neuroimage; 2004 Nov; 23(3):1059-67. PubMed ID: 15528106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents.
    Bianciardi M; Di Russo F; Aprile T; Maraviglia B; Hagberg GE
    Magn Reson Imaging; 2004 Dec; 22(10):1429-40. PubMed ID: 15707792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting neuronal currents with MRI: a human study.
    Huang J
    Magn Reson Med; 2014 Feb; 71(2):756-62. PubMed ID: 23475847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial attempts at directly detecting alpha wave activity in the brain using MRI.
    Konn D; Leach S; Gowland P; Bowtell R
    Magn Reson Imaging; 2004 Dec; 22(10):1413-27. PubMed ID: 15707791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood oxygenation level-dependent (BOLD) functional MRI of visual stimulation in the rat retina at 11.7 T.
    De La Garza BH; Muir ER; Li G; Shih YY; Duong TQ
    NMR Biomed; 2011 Feb; 24(2):188-93. PubMed ID: 21344533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not?
    Luo Q; Lu H; Lu H; Senseman D; Worsley K; Yang Y; Gao JH
    Neuroimage; 2009 Oct; 47(4):1268-76. PubMed ID: 19539040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength.
    Kruggel F; Wiggins CJ; Herrmann CS; von Cramon DY
    Magn Reson Med; 2000 Aug; 44(2):277-82. PubMed ID: 10918327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cortical areas underlying the perception of optic flow: brain imaging studies.
    Greenlee MW
    Int Rev Neurobiol; 2000; 44():269-92. PubMed ID: 10605650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging.
    Olman C; Ronen I; Ugurbil K; Kim DS
    J Neurosci Methods; 2003 Dec; 131(1-2):161-70. PubMed ID: 14659836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex.
    Liu CS; Bryan RN; Miki A; Woo JH; Liu GT; Elliott MA
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1628-34. PubMed ID: 16971600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of axonal magnetic fields in the human corpus callosum using visual stimulation based on MR signal modulation.
    Chow LS; Cook GG; Whitby E; Paley MN
    J Magn Reson Imaging; 2007 Aug; 26(2):265-73. PubMed ID: 17654726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inability to directly detect magnetic field changes associated with neuronal activity.
    Parkes LM; de Lange FP; Fries P; Toni I; Norris DG
    Magn Reson Med; 2007 Feb; 57(2):411-6. PubMed ID: 17260380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory evoked potentials: PERG, VEP, and SEP.
    Bodis-Wollner I
    Curr Opin Neurol Neurosurg; 1992 Oct; 5(5):716-26. PubMed ID: 1392145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of BOLD and direct-MR neuronal detection (DND) in the human visual cortex at 3T.
    Chow LS; Dagens A; Fu Y; Cook GG; Paley MN
    Magn Reson Med; 2008 Nov; 60(5):1147-54. PubMed ID: 18956466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional organization of visual responses in the octopus optic lobe.
    Pungor JR; Allen VA; Songco-Casey JO; Niell CM
    Curr Biol; 2023 Jul; 33(13):2784-2793.e3. PubMed ID: 37343556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging.
    Liu HL; Feng CM; Li J; Su FC; Li N; Glahn D; Gao JH
    J Magn Reson Imaging; 2005 Feb; 21(2):111-7. PubMed ID: 15666409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Octopus optic nerve responses.
    Karita K; Tasaki K
    Tohoku J Exp Med; 1973 Aug; 110(4):311-8. PubMed ID: 4764142
    [No Abstract]   [Full Text] [Related]  

  • 19. The electroretinogram and visual evoked potential of freely moving rats.
    Szabó-Salfay O; Pálhalmi J; Szatmári E; Barabás P; Szilágyi N; Juhász G
    Brain Res Bull; 2001 Sep; 56(1):7-14. PubMed ID: 11604242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a wide-view visual presentation system for visual retinotopic mapping during functional MRI.
    Yan T; Jin F; He J; Wu J
    J Magn Reson Imaging; 2011 Feb; 33(2):441-7. PubMed ID: 21274987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.