These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24301610)

  • 1. Optical sinc-shaped Nyquist pulses of exceptional quality.
    Soto MA; Alem M; Amin Shoaie M; Vedadi A; Brès CS; Thévenaz L; Schneider T
    Nat Commun; 2013; 4():2898. PubMed ID: 24301610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb.
    Alishahi F; Fallahpour A; Mohajerin-Ariaei A; Cao Y; Kordts A; Pfeiffer MHP; Karpov M; Almaiman A; Liao P; Zou K; Liu C; Willner AN; Tur M; Kippenberg TJ; Willner AE
    Opt Lett; 2019 Apr; 44(7):1852-1855. PubMed ID: 30933164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and nonlinear propagation of optical Nyquist pulses in fibers.
    Hirooka T; Nakazawa M
    Opt Express; 2012 Aug; 20(18):19836-49. PubMed ID: 23037036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses.
    Zhang J; Yu J; Chi N
    Sci Rep; 2015 Sep; 5():13649. PubMed ID: 26323238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM.
    Schmogrow R; Winter M; Meyer M; Hillerkuss D; Wolf S; Baeuerle B; Ludwig A; Nebendahl B; Ben-Ezra S; Meyer J; Dreschmann M; Huebner M; Becker J; Koos C; Freude W; Leuthold J
    Opt Express; 2012 Jan; 20(1):317-37. PubMed ID: 22274355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High speed all optical Nyquist signal generation and full-band coherent detection.
    Zhang J; Yu J; Fang Y; Chi N
    Sci Rep; 2014 Aug; 4():6156. PubMed ID: 25142269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics.
    Misra A; Kress C; Singh K; Meier J; Schwabe T; Preussler S; Scheytt JC; Schneider T
    Opt Express; 2022 Apr; 30(8):13776-13789. PubMed ID: 35472983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz.
    Schmogrow R; Hillerkuss D; Wolf S; Bäuerle B; Winter M; Kleinow P; Nebendahl B; Dippon T; Schindler PC; Koos C; Freude W; Leuthold J
    Opt Express; 2012 Mar; 20(6):6439-47. PubMed ID: 22418526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.
    Cordette S; Vedadi A; Shoaie MA; Brès CS
    Opt Lett; 2014 Dec; 39(23):6668-71. PubMed ID: 25490648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low SNR difference Nyquist-WDM channels with optical sinc-shaped pulses based on flat electro-optic frequency combs.
    Dong F; Chen G; Liu Z; Lin P; Zhang Y; Ma W; Wang T; Liu Z
    Appl Opt; 2020 Dec; 59(36):11389-11395. PubMed ID: 33362064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-speed "orthogonal" TDM transmission with an optical Nyquist pulse train.
    Nakazawa M; Hirooka T; Ruan P; Guan P
    Opt Express; 2012 Jan; 20(2):1129-40. PubMed ID: 22274458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical sampling to enhance Nyquist-shaped signal detection under limited receiver bandwidth.
    Geng Z; Kong D; Rozental V; Lowery AJ; Corcoran B
    Opt Express; 2019 Aug; 27(17):24007-24017. PubMed ID: 31510296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic generation of frequency-doubling Nyquist pulses using external modulation.
    Yuan J; Mei Y; Xu X; Cui J; Zhang H; Liu J
    Appl Opt; 2023 Sep; 62(26):7017-7023. PubMed ID: 37707042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM.
    Lowery AJ; Xie Y; Zhu C
    Opt Express; 2015 Aug; 23(17):21706-18. PubMed ID: 26368149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soliton-sinc optical pulses.
    Turitsyn SK; Bogdanov S; Redyuk A
    Opt Lett; 2020 Oct; 45(19):5352-5355. PubMed ID: 33001892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples.
    Schimpf D; Seise E; Limpert J; Tünnermann A
    Opt Express; 2008 Jun; 16(12):8876-86. PubMed ID: 18545600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Nyquist pulse generation using a time lens with spectral slicing.
    Wang D; Huo L; Xing Y; Jiang X; Lou C
    Opt Express; 2015 Feb; 23(4):4329-39. PubMed ID: 25836469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator.
    Wu J; Zang J; Li Y; Kong D; Qiu J; Zhou S; Shi J; Lin J
    Opt Express; 2014 Aug; 22(17):20463-72. PubMed ID: 25321253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km.
    Hirooka T; Ruan P; Guan P; Nakazawa M
    Opt Express; 2012 Jul; 20(14):15001-7. PubMed ID: 22772195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DPSK signal regeneration using a fiber-based amplitude regenerator.
    Matsumoto M; Sakaguchi H
    Opt Express; 2008 Jul; 16(15):11169-75. PubMed ID: 18648432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.