These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2430227)
1. Blood volume expansion with hetastarch in acute ischaemic stroke: the effects on local cerebral blood flow and computer mapped EEG. Tranmer BI; Keller TS; Nagata K; Kindt GW; Adey GR Neurol Res; 1986 Sep; 8(3):177-82. PubMed ID: 2430227 [TBL] [Abstract][Full Text] [Related]
2. Colloidal volume expansion during acute cerebral ischaemia: assessed by local cerebral blood flow and computerized power ratio index. Tranmer BI; Gross CE; Adey GR; Keller TS; Nagata K; Iacobacci R Neurol Res; 1988 Sep; 10(3):151-5. PubMed ID: 2464144 [TBL] [Abstract][Full Text] [Related]
3. Effect of Fluosol-DA and hetastarch on local cerebral blood flow, cortical O2 availability and computerized EEG data during cerebral ischaemia. Tranmer BI; Iacobacci R; Feiler S Neurol Res; 1990 Mar; 12(1):17-22. PubMed ID: 1692110 [TBL] [Abstract][Full Text] [Related]
4. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. Tranmer BI; Keller TS; Kindt GW; Archer D J Neurosurg; 1992 Aug; 77(2):253-9. PubMed ID: 1625014 [TBL] [Abstract][Full Text] [Related]
5. Hyperdynamic therapy for focal cerebral ischemia of rats: use of colloidal volume expansion and dobutamine. Ohtaki M; Tranmer BI Surg Neurol; 1993 Aug; 40(2):131-7. PubMed ID: 7689762 [TBL] [Abstract][Full Text] [Related]
6. Role of hypervolemic hemodilution in focal cerebral ischemia of rats. Ohtaki M; Tranmer BI Surg Neurol; 1993 Sep; 40(3):196-206. PubMed ID: 8346473 [TBL] [Abstract][Full Text] [Related]
7. The influence of intravascular volume expansion on cerebral blood flow and blood volume in normal rats. Todd MM; Weeks JB; Warner DS Anesthesiology; 1993 May; 78(5):945-53. PubMed ID: 8489067 [TBL] [Abstract][Full Text] [Related]
8. Hypervolemic hemodilution in experimental focal cerebral ischemia. Elevation of cardiac output, regional cortical blood flow, and ICP after intravascular volume expansion with low molecular weight dextran. Wood JH; Simeone FA; Fink EA; Golden MA J Neurosurg; 1983 Sep; 59(3):500-9. PubMed ID: 6193256 [TBL] [Abstract][Full Text] [Related]
9. Local cerebral blood flow and glucose metabolism in chronic focal ischaemia of stroke-prone spontaneously hypertensive rats. Shima K; Umezawa H; Chigasaki H; Okuyama S; Araki H Neurol Res; 1994 Aug; 16(4):289-96. PubMed ID: 7984261 [TBL] [Abstract][Full Text] [Related]
10. Local hemodynamic changes during transient middle cerebral artery occlusion and recirculation in the rat: a [14C]iodoantipyrine autoradiographic study. Takagi K; Zhao W; Busto R; Ginsberg MD Brain Res; 1995 Sep; 691(1-2):160-8. PubMed ID: 8590048 [TBL] [Abstract][Full Text] [Related]
12. Patterns of EEG frequency content during experimental transient ischaemia in subhuman primates. Faught E; Mitchem HL; Conger KA; Garcia JH; Halsey JH Neurol Res; 1988 Sep; 10(3):184-92. PubMed ID: 2905783 [TBL] [Abstract][Full Text] [Related]
13. Impaired cerebral autoregulation 24 h after induction of transient unilateral focal ischaemia in the rat. MacGregor DG; Carswell HV; Graham DI; McCulloch J; Macrae IM Eur J Neurosci; 2000 Jan; 12(1):58-66. PubMed ID: 10651860 [TBL] [Abstract][Full Text] [Related]
14. Haemodynamic changes in pre and post ischaemia following simulated embolic stroke of middle cerebral artery occlusion. Kaminogo M Neurol Res; 1985 Jun; 7(2):75-80. PubMed ID: 2863773 [TBL] [Abstract][Full Text] [Related]