These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 24302425)
41. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter? Bueno A; Sancho-Knapik D; Gil-Pelegrín E; Leide J; Peguero-Pina JJ; Burghardt M; Riederer M Tree Physiol; 2020 Jun; 40(7):827-840. PubMed ID: 31728539 [TBL] [Abstract][Full Text] [Related]
42. Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles. Chen B; Li Y; Guo Y; Zhu L; Schnoor JL Environ Sci Technol; 2008 Mar; 42(5):1517-23. PubMed ID: 18441797 [TBL] [Abstract][Full Text] [Related]
43. Ultrastructure of plant leaf cuticles in relation to sample preparation as observed by transmission electron microscopy. Guzmán P; Fernández V; Khayet M; García ML; Fernández A; Gil L ScientificWorldJournal; 2014; 2014():963921. PubMed ID: 24895682 [TBL] [Abstract][Full Text] [Related]
44. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411 [TBL] [Abstract][Full Text] [Related]
45. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
46. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. De Giorgi J; Piskurewicz U; Loubery S; Utz-Pugin A; Bailly C; Mène-Saffrané L; Lopez-Molina L PLoS Genet; 2015 Dec; 11(12):e1005708. PubMed ID: 26681322 [TBL] [Abstract][Full Text] [Related]
47. Chemical composition of leaf cutin in six Quercus suber provenances. Simões R; Miranda I; Pereira H Phytochemistry; 2021 Jan; 181():112570. PubMed ID: 33166753 [TBL] [Abstract][Full Text] [Related]
48. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Li Y; Beisson F; Koo AJ; Molina I; Pollard M; Ohlrogge J Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18339-44. PubMed ID: 17991776 [TBL] [Abstract][Full Text] [Related]
49. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity. Li C; Liu C; Ma X; Wang A; Duan R; Nawrath C; Komatsuda T; Chen G Breed Sci; 2015 Sep; 65(4):327-32. PubMed ID: 26366115 [TBL] [Abstract][Full Text] [Related]
50. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin. Franke R; Briesen I; Wojciechowski T; Faust A; Yephremov A; Nawrath C; Schreiber L Phytochemistry; 2005 Nov; 66(22):2643-58. PubMed ID: 16289150 [TBL] [Abstract][Full Text] [Related]
51. Fine structure of isolated and non-isolated potato tuber periderm. Schmidt HW; Schönherr J Planta; 1982 Mar; 154(1):76-80. PubMed ID: 24275921 [TBL] [Abstract][Full Text] [Related]
52. Water permeability of Betula periderm. Schönherr J; Ziegler H Planta; 1980 Jan; 147(4):345-54. PubMed ID: 24311086 [TBL] [Abstract][Full Text] [Related]
53. Leaf patterning of Clivia miniata var. variegata is associated with differential DNA methylation. Wang QM; Wang L; Zhou Y; Cui J; Wang Y; Zhao C Plant Cell Rep; 2016 Jan; 35(1):167-84. PubMed ID: 26466593 [TBL] [Abstract][Full Text] [Related]
54. BODYGUARD is required for the biosynthesis of cutin in Arabidopsis. Jakobson L; Lindgren LO; Verdier G; Laanemets K; Brosché M; Beisson F; Kollist H New Phytol; 2016 Jul; 211(2):614-26. PubMed ID: 26990896 [TBL] [Abstract][Full Text] [Related]
55. Probing the Molecular Structure and Orientation of the Leaf Surface of Brassica oleracea L. by Polarization Modulation-Infrared Reflection-Absorption Spectroscopy. Hama T; Seki K; Ishibashi A; Miyazaki A; Kouchi A; Watanabe N; Shimoaka T; Hasegawa T Plant Cell Physiol; 2019 Jul; 60(7):1567-1580. PubMed ID: 31020320 [TBL] [Abstract][Full Text] [Related]
56. Thermodynamic analysis of nonelectrolyte sorption in plant cuticles: The effects of concentration and temperature on sorption of 4-nitrophenol. Riederer M; Schönherr J Planta; 1986 Mar; 169(1):69-80. PubMed ID: 24232431 [TBL] [Abstract][Full Text] [Related]
57. The effect of the environment on the permeability and composition of Citrus leaf cuticles : II. Composition of soluble cuticular lipids and correlation with transport properties. Riederer M; Schneider G Planta; 1990 Jan; 180(2):154-65. PubMed ID: 24201939 [TBL] [Abstract][Full Text] [Related]
58. The Role of Cutinsomes in Plant Cuticle Formation. Stępiński D; Kwiatkowska M; Wojtczak A; Polit JT; Domínguez E; Heredia A; Popłońska K Cells; 2020 Jul; 9(8):. PubMed ID: 32722473 [TBL] [Abstract][Full Text] [Related]
59. ABC-type transporters and cuticle assembly: Linking function to polarity in epidermis cells. Panikashvili D; Aharoni A Plant Signal Behav; 2008 Oct; 3(10):806-9. PubMed ID: 19704564 [TBL] [Abstract][Full Text] [Related]
60. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy. Li Q; Chen B Environ Sci Technol; 2014 May; 48(9):4774-81. PubMed ID: 24678956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]