These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24302696)

  • 21. Examining the short term effects of emotion under an Adaptation Level Theory model of tinnitus perception.
    Durai M; O'Keeffe MG; Searchfield GD
    Hear Res; 2017 Mar; 345():23-29. PubMed ID: 28027920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulating the processing of emotional stimuli by cognitive demand.
    Kellermann TS; Sternkopf MA; Schneider F; Habel U; Turetsky BI; Zilles K; Eickhoff SB
    Soc Cogn Affect Neurosci; 2012 Mar; 7(3):263-73. PubMed ID: 21258093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cognitive control modulates preferential sensory processing of affective stimuli.
    Steinhauser M; Flaisch T; Meinzer M; Schupp HT
    Neuropsychologia; 2016 Oct; 91():435-443. PubMed ID: 27619004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural responses to ambiguity involve domain-general and domain-specific emotion processing systems.
    Neta M; Kelley WM; Whalen PJ
    J Cogn Neurosci; 2013 Apr; 25(4):547-57. PubMed ID: 23363410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial Information of Somatosensory Stimuli in the Brain: Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data.
    Lee IS; Jung WM; Park HJ; Chae Y
    Neural Plast; 2020; 2020():8307580. PubMed ID: 32684924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Common Functional Brain States Encode both Perceived Emotion and the Psychophysiological Response to Affective Stimuli.
    Bush KA; Privratsky A; Gardner J; Zielinski MJ; Kilts CD
    Sci Rep; 2018 Oct; 8(1):15444. PubMed ID: 30337576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related alterations in simple declarative memory and the effect of negative stimulus valence.
    Murty VP; Sambataro F; Das S; Tan HY; Callicott JH; Goldberg TE; Meyer-Lindenberg A; Weinberger DR; Mattay VS
    J Cogn Neurosci; 2009 Oct; 21(10):1920-33. PubMed ID: 18823239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus.
    Bravo F; Cross I; Hawkins S; Gonzalez N; Docampo J; Bruno C; Stamatakis EA
    Neuropsychologia; 2017 Jul; 102():144-162. PubMed ID: 28602997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm.
    Klucken T; Kagerer S; Schweckendiek J; Tabbert K; Vaitl D; Stark R
    Neuroscience; 2009 Jan; 158(2):721-31. PubMed ID: 18976695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of physiological responses to affect eliciting pictures and music.
    Kim J; Wedell DH
    Int J Psychophysiol; 2016 Mar; 101():9-17. PubMed ID: 26752207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of emotion regulation strategy on brain responses to the valence and social content of visual scenes.
    Vrtička P; Sander D; Vuilleumier P
    Neuropsychologia; 2011 Apr; 49(5):1067-1082. PubMed ID: 21345342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The neural representation of face space dimensions.
    Gao X; Wilson HR
    Neuropsychologia; 2013 Aug; 51(10):1787-93. PubMed ID: 23850598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect.
    Bush KA; Inman CS; Hamann S; Kilts CD; James GA
    Front Hum Neurosci; 2017; 11():459. PubMed ID: 28959198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS).
    Lulé D; Diekmann V; Anders S; Kassubek J; Kübler A; Ludolph AC; Birbaumer N
    J Neurol; 2007 Apr; 254(4):519-27. PubMed ID: 17401515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covert brand recognition engages emotion-specific brain networks.
    Casarotto S; Ricciardi E; Romani S; Dalli D; Pietrini P
    Arch Ital Biol; 2012 Dec; 150(4):259-73. PubMed ID: 23479459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody.
    Ethofer T; Kreifelts B; Wiethoff S; Wolf J; Grodd W; Vuilleumier P; Wildgruber D
    J Cogn Neurosci; 2009 Jul; 21(7):1255-68. PubMed ID: 18752404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The neurophysiological bases of emotion: An fMRI study of the affective circumplex using emotion-denoting words.
    Posner J; Russell JA; Gerber A; Gorman D; Colibazzi T; Yu S; Wang Z; Kangarlu A; Zhu H; Peterson BS
    Hum Brain Mapp; 2009 Mar; 30(3):883-95. PubMed ID: 18344175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modality-Independent Coding of Scene Categories in Prefrontal Cortex.
    Jung Y; Larsen B; Walther DB
    J Neurosci; 2018 Jun; 38(26):5969-5981. PubMed ID: 29858483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing category selectivity for environmental sounds in the human auditory brain.
    Doehrmann O; Naumer MJ; Volz S; Kaiser J; Altmann CF
    Neuropsychologia; 2008 Sep; 46(11):2776-86. PubMed ID: 18597794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representation of perceived sound valence in the human brain.
    Viinikainen M; Kätsyri J; Sams M
    Hum Brain Mapp; 2012 Oct; 33(10):2295-305. PubMed ID: 21826759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.