These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 24303208)
1. Stabilization of the Central Part of Tropomyosin Molecule Alters the Ca2+-sensitivity of Actin-Myosin Interaction. Shchepkin DV; Matyushenko AM; Kopylova GV; Artemova NV; Bershitsky SY; Tsaturyan AK; Levitsky DI Acta Naturae; 2013 Jul; 5(3):126-9. PubMed ID: 24303208 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. Matyushenko AM; Artemova NV; Shchepkin DV; Kopylova GV; Bershitsky SY; Tsaturyan AK; Sluchanko NN; Levitsky DI FEBS J; 2014 Apr; 281(8):2004-16. PubMed ID: 24548721 [TBL] [Abstract][Full Text] [Related]
3. Cooperativity of myosin interaction with thin filaments is enhanced by stabilizing substitutions in tropomyosin. Shchepkin DV; Nabiev SR; Kopylova GV; Matyushenko AM; Levitsky DI; Bershitsky SY; Tsaturyan AK J Muscle Res Cell Motil; 2017 Apr; 38(2):183-191. PubMed ID: 28540577 [TBL] [Abstract][Full Text] [Related]
4. Functional role of the core gap in the middle part of tropomyosin. Matyushenko AM; Shchepkin DV; Kopylova GV; Bershitsky SY; Koubassova NA; Tsaturyan AK; Levitsky DI FEBS J; 2018 Mar; 285(5):871-886. PubMed ID: 29278453 [TBL] [Abstract][Full Text] [Related]
5. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay. Kopylova GV; Shchepkin DV; Nikitina LV Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719 [TBL] [Abstract][Full Text] [Related]
6. Effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin on the domain structure of its molecule. Matyushenko AM; Artemova NV; Sluchanko NN; Levitsky DI Biophys Chem; 2015 Jan; 196():77-85. PubMed ID: 25451681 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin. Hilbert L; Bates G; Roman HN; Blumenthal JL; Zitouni NB; Sobieszek A; Mackey MC; Lauzon AM PLoS Comput Biol; 2013 Oct; 9(10):e1003273. PubMed ID: 24204225 [TBL] [Abstract][Full Text] [Related]
8. Cardiomyopathy-associated mutations in tropomyosin differently affect actin-myosin interaction at single-molecule and ensemble levels. Kopylova GV; Shchepkin DV; Nabiev SR; Matyushenko AM; Koubassova NA; Levitsky DI; Bershitsky SY J Muscle Res Cell Motil; 2019 Dec; 40(3-4):299-308. PubMed ID: 31643006 [TBL] [Abstract][Full Text] [Related]
9. Effect of Cardiomyopathic Mutations in Tropomyosin on Calcium Regulation of the Actin-Myosin Interaction in Skeletal Muscle. Kopylova GV; Shchepkin DV; Borovkov DI; Matyushenko AM Bull Exp Biol Med; 2016 Nov; 162(1):42-44. PubMed ID: 27878731 [TBL] [Abstract][Full Text] [Related]
10. The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin. Scellini B; Piroddi N; Matyushenko AM; Levitsky DI; Poggesi C; Lehrer SS; Tesi C Biophys J; 2017 Jan; 112(2):376-387. PubMed ID: 28122223 [TBL] [Abstract][Full Text] [Related]
11. Regulation of contraction in striated muscle. Gordon AM; Homsher E; Regnier M Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208 [TBL] [Abstract][Full Text] [Related]
12. Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin-myosin interaction with in vitro motility assay. Shchepkin DV; Kopylova GV; Nikitina LV Biochem Biophys Res Commun; 2011 Nov; 415(1):104-8. PubMed ID: 22020102 [TBL] [Abstract][Full Text] [Related]
13. In vitro movement of actin filaments on gizzard smooth muscle myosin: requirement of phosphorylation of myosin light chain and effects of tropomyosin and caldesmon. Okagaki T; Higashi-Fujime S; Ishikawa R; Takano-Ohmuro H; Kohama K J Biochem; 1991 Jun; 109(6):858-66. PubMed ID: 1939006 [TBL] [Abstract][Full Text] [Related]
14. Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. VanBuren P; Palmiter KA; Warshaw DM Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12488-93. PubMed ID: 10535949 [TBL] [Abstract][Full Text] [Related]
15. The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. Oguchi Y; Ishizuka J; Hitchcock-DeGregori SE; Ishiwata S; Kawai M J Mol Biol; 2011 Dec; 414(5):667-80. PubMed ID: 22041451 [TBL] [Abstract][Full Text] [Related]
16. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. Poole KJ; Lorenz M; Evans G; Rosenbaum G; Pirani A; Craig R; Tobacman LS; Lehman W; Holmes KC J Struct Biol; 2006 Aug; 155(2):273-84. PubMed ID: 16793285 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm1.1. Borovikov YS; Rysev NA; Avrova SV; Karpicheva OE; Borys D; Moraczewska J Arch Biochem Biophys; 2017 Jan; 614():28-40. PubMed ID: 27956029 [TBL] [Abstract][Full Text] [Related]
18. Regulation of actomyosin interactions in Limulus muscle proteins. Wang F; Martin BM; Sellers JR J Biol Chem; 1993 Feb; 268(5):3776-80. PubMed ID: 8429052 [TBL] [Abstract][Full Text] [Related]
19. Skeletal muscle regulatory proteins enhance F-actin in vitro motility. Gordon AM; Chen Y; Liang B; LaMadrid M; Luo Z; Chase PB Adv Exp Med Biol; 1998; 453():187-96; discussion 196-7. PubMed ID: 9889829 [TBL] [Abstract][Full Text] [Related]
20. Reverse actin sliding triggers strong myosin binding that moves tropomyosin. Bekyarova TI; Reedy MC; Baumann BA; Tregear RT; Ward A; Krzic U; Prince KM; Perz-Edwards RJ; Reconditi M; Gore D; Irving TC; Reedy MK Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10372-7. PubMed ID: 18658238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]