These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24303305)

  • 41. Reduced Effectiveness of Interruptive Drug-Drug Interaction Alerts after Conversion to a Commercial Electronic Health Record.
    Wright A; Aaron S; Seger DL; Samal L; Schiff GD; Bates DW
    J Gen Intern Med; 2018 Nov; 33(11):1868-1876. PubMed ID: 29766382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient and Accurate Extracting of Unstructured EHRs on Cancer Therapy Responses for the Development of RECIST Natural Language Processing Tools: Part I, the Corpus.
    Li Y; Luo YH; Wampfler JA; Rubinstein SM; Tiryaki F; Ashok K; Warner JL; Xu H; Yang P
    JCO Clin Cancer Inform; 2020 May; 4():383-391. PubMed ID: 32364754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prevention of adverse drug reactions in intensive care patients by personal intervention based on an electronic clinical decision support system.
    Bertsche T; Pfaff J; Schiller P; Kaltschmidt J; Pruszydlo MG; Stremmel W; Walter-Sack I; Haefeli WE; Encke J
    Intensive Care Med; 2010 Apr; 36(4):665-72. PubMed ID: 20143221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimising computerised decision support to transform medication safety and reduce prescriber burden: study protocol for a mixed-methods evaluation of drug-drug interaction alerts.
    Baysari MT; Zheng WY; Li L; Westbrook J; Day RO; Hilmer S; Van Dort BA; Hargreaves A; Kennedy P; Monaghan C; Doherty P; Draheim M; Nair L; Samson R
    BMJ Open; 2019 Aug; 9(8):e026034. PubMed ID: 31427312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drug drug interaction extraction from the literature using a recursive neural network.
    Lim S; Lee K; Kang J
    PLoS One; 2018; 13(1):e0190926. PubMed ID: 29373599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mining severe drug-drug interaction adverse events using Semantic Web technologies: a case study.
    Jiang G; Liu H; Solbrig HR; Chute CG
    BioData Min; 2015; 8():12. PubMed ID: 25829948
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Adverse Drug Reactions Identified in Nursing Notes Using Reinforcement Learning.
    Jeon E; Kim Y; Park H; Park RW; Shin H; Park HA
    Healthc Inform Res; 2020 Apr; 26(2):104-111. PubMed ID: 32547807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using Probabilistic Record Linkage of Structured and Unstructured Data to Identify Duplicate Cases in Spontaneous Adverse Event Reporting Systems.
    Kreimeyer K; Menschik D; Winiecki S; Paul W; Barash F; Woo EJ; Alimchandani M; Arya D; Zinderman C; Forshee R; Botsis T
    Drug Saf; 2017 Jul; 40(7):571-582. PubMed ID: 28293864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spontaneous Reports of Serious Adverse Drug Reactions Resulting From Drug-Drug Interactions: An Analysis From the French Pharmacovigilance Database.
    Létinier L; Ferreira A; Marceron A; Babin M; Micallef J; Miremont-Salamé G; Pariente A;
    Front Pharmacol; 2020; 11():624562. PubMed ID: 33841134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports.
    Cai R; Liu M; Hu Y; Melton BL; Matheny ME; Xu H; Duan L; Waitman LR
    Artif Intell Med; 2017 Feb; 76():7-15. PubMed ID: 28363289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pharmacointeraction network models predict unknown drug-drug interactions.
    Cami A; Manzi S; Arnold A; Reis BY
    PLoS One; 2013; 8(4):e61468. PubMed ID: 23620757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feasibility of Prioritizing Drug-Drug-Event Associations Found in Electronic Health Records.
    Banda JM; Callahan A; Winnenburg R; Strasberg HR; Cami A; Reis BY; Vilar S; Hripcsak G; Dumontier M; Shah NH
    Drug Saf; 2016 Jan; 39(1):45-57. PubMed ID: 26446143
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-priority drug-drug interactions for use in electronic health records.
    Phansalkar S; Desai AA; Bell D; Yoshida E; Doole J; Czochanski M; Middleton B; Bates DW
    J Am Med Inform Assoc; 2012; 19(5):735-43. PubMed ID: 22539083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defining and Assessing Geriatric Risk Factors and Associated Health Care Utilization Among Older Adults Using Claims and Electronic Health Records.
    Kan HJ; Kharrazi H; Leff B; Boyd C; Davison A; Chang HY; Kimura J; Wu S; Anzaldi L; Richards T; Lasser EC; Weiner JP
    Med Care; 2018 Mar; 56(3):233-239. PubMed ID: 29438193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application.
    Leroy G; Gu Y; Pettygrove S; Galindo MK; Arora A; Kurzius-Spencer M
    J Med Internet Res; 2018 Nov; 20(11):e10497. PubMed ID: 30404767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physicians' responses to computerized drug-drug interaction alerts for outpatients.
    Yeh ML; Chang YJ; Wang PY; Li YC; Hsu CY
    Comput Methods Programs Biomed; 2013 Jul; 111(1):17-25. PubMed ID: 23608682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance.
    Yang CC; Yang H
    Artif Intell Med; 2018 Aug; 90():42-52. PubMed ID: 30093253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The class imbalance problem detecting adverse drug reactions in electronic health records.
    Santiso S; Casillas A; Pérez A
    Health Informatics J; 2019 Dec; 25(4):1768-1778. PubMed ID: 30230408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.