These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 2430332)

  • 21. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensive mis-splicing of a bi-partite plant mitochondrial group II intron.
    Elina H; Brown GG
    Nucleic Acids Res; 2010 Jan; 38(3):996-1008. PubMed ID: 19920126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron.
    Parker R; Siliciano PG
    Nature; 1993 Feb; 361(6413):660-2. PubMed ID: 8437627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.
    Partono S; Lewin AS
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8192-6. PubMed ID: 2236031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A shared RNA-binding site in the Pet54 protein is required for translational activation and group I intron splicing in yeast mitochondria.
    Kaspar BJ; Bifano AL; Caprara MG
    Nucleic Acids Res; 2008 May; 36(9):2958-68. PubMed ID: 18388132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae.
    Zhang Y; Bell A; Perlman PS; Leibowitz MJ
    RNA; 2000 Jul; 6(7):937-51. PubMed ID: 10917591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Group II intron splicing in chloroplasts: identificationof mutations determining intron stability and fate of exon RNA.
    Holländer V; Kück U
    Nucleic Acids Res; 1999 Jun; 27(11):2345-53. PubMed ID: 10325424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial Mg(2+) homeostasis is critical for group II intron splicing in vivo.
    Gregan J; Kolisek M; Schweyen RJ
    Genes Dev; 2001 Sep; 15(17):2229-37. PubMed ID: 11544180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro.
    van der Veen R; Arnberg AC; van der Horst G; Bonen L; Tabak HF; Grivell LA
    Cell; 1986 Jan; 44(2):225-34. PubMed ID: 2417726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Group II intron domain 5 facilitates a trans-splicing reaction.
    Jarrell KA; Dietrich RC; Perlman PS
    Mol Cell Biol; 1988 Jun; 8(6):2361-6. PubMed ID: 3405208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autocatalytic activities of intron 5 of the cob gene of yeast mitochondria.
    Partono S; Lewin AS
    Mol Cell Biol; 1988 Jun; 8(6):2562-71. PubMed ID: 3043183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Group II intron RNA-catalyzed recombination of RNA in vitro.
    Mörl M; Schmelzer C
    Nucleic Acids Res; 1990 Nov; 18(22):6545-51. PubMed ID: 1701241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New RNA-mediated reactions by yeast mitochondrial group I introns.
    van der Horst G; Tabak HF
    EMBO J; 1987 Jul; 6(7):2139-44. PubMed ID: 2443349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products.
    Daniels DL; Michels WJ; Pyle AM
    J Mol Biol; 1996 Feb; 256(1):31-49. PubMed ID: 8609612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation.
    Schmelzer C; Schweyen RJ
    Cell; 1986 Aug; 46(4):557-65. PubMed ID: 3524857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of products derived from self-splicing of intron aI5 alpha which is located in the mitochondrial COX I gene of Saccharomyces cerevisiae.
    Winter AJ; van der Horst G; Tabak HF
    Nucleic Acids Res; 1988 May; 16(9):3845-61. PubMed ID: 3287336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The conserved terminal guanosine of a group I intron can help prevent reopening of the ligated exons.
    Suh E; Waring RB
    J Mol Biol; 1993 Jul; 232(2):375-85. PubMed ID: 7688426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Splice site selection by intron aI3 of the COX1 gene from Saccharomyces cerevisiae.
    Winter AJ; Groot Koerkamp MJ; Tabak HF
    Nucleic Acids Res; 1992 Aug; 20(15):3897-904. PubMed ID: 1324471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.